30.Autonomous Undersea Vehicles Surfacing

(Published in SP’s Naval Forces Oct- Nov 13)

Autonomous Undersea Vehicles Surfacing

“It’s [NSCT-1 UUV Platoon] done a wonderful job for us over there in the Umm Qasr vicinity and we are looking forward to the end of the conflict to be able to tell the full story of the first operational deployment of UUVs.”

                                                RADM Paul Ryan, CMWC, Inside the Navy, 31 Mar 2003

Unmanned Undersea Vehicles (UUV) were used in Operation Iraqi Freedom by ‘Naval Special Clearance Team (NSCT) One’, for mine hunting. They carried out operations in port of Umm Qsar. Additional UUV operations were done up river at Karbala and Az Zubayr, Iraq. NSCT One initially checked the bottom for mines then the divers carried out searches of the quay wall and the surrounding areas to locate mined zones. The use of UUVs in operation Iraqi Freedom also proved their utility in hostile war like conditions and in generating valuable oceanographic and environmental data for military as well as commercial use.

The term Unmanned Undersea Vehicles encompasses the Remotely Operated Vehicle (ROV), the Paravane, the sea glider, the Autonomous Undersea Vehicle (AUV) and various hybrids. AUVs are free-swimming autonomous underwater vehicles characterised by modularity, reliability and possibility for custom design. This article would by and large highlight the usage of AUVs.

AUV Sub-Systems

A perspective into components of an AUV would bring out the technological complexities involved in the design and the competence required in their manufacture. An AUV consists of subsystems like, Pressure and Hydrodynamic Hull, Ballast System, Masts, Power and Energy System, Propulsion System, Obstacle-Avoidance System, Manoeuvring System, Communications System, sensors, Navigation system, Host Interfaces and Combat Payload.


Pressure and Hydrodynamic Hull.                       UUV structure gives vehicles their rigidity and provides strong points for control surfaces, thrusters, batteries, and other UUV components while permitting internal components to be accessed. Pressure hull enables UUV to withstand sea pressure as it descends into the ocean. The pressure to which an UUV is subjected increases linearly with depth. At 6,000 m sea pressure is ~ 4.4 tons psi, whereas, at 300 m sea pressure is ~441 psi. For relatively shallow operation, therefore the hulls of AUVs can be fabricated from lighter materials such as aluminium.


Hydrodynamic hull design reduces drag as UUV moves through the ocean. Minimising drag to maximise speed and endurance is one of the design objectives along with controlling flow over the UUV body for efficient propulsion. Stability and manoeuvrability at low speeds are difficult. Sensor operation stabilisation at higher speeds is problematic. Stability in AUV design scores over speed and endurance.


Ballast System.         Neutral or near-neutral buoyancy, once AUV is submerged, is achieved through Ballasting. Lead or foam fixed buoyancy systems are used which can be adjusted depending upon the changes in role/payload of the AUV. Variable ballast system is used for diving or surfacing the AUV and Drop Ballast system is used for surfacing the AUV in case of any emergency.

Power and Energy System.           The power requirements of an AUV until recently, were being met with by the use of silver zinc batteries, however due to their higher costs and limited shelf & cycle lives, they are being replaced with lithium ion or lithium polymer batteries. Solar powered AUVs, which surface during the day for recharging have also been developed. Bus system is used for uniform power distribution.


Propulsion System.             Brushless DC motors with propellers are favoured for AUVs of the torpedo type, since they are better than the motors with brushes in factors of reliability, efficiency and power density.


Obstacle-Avoidance System.         Obstacle avoidance is carried out by use of single or multiple acoustic beam systems to detect and avoid obstacles. Avoidance manoeuvres are pre- programmed in the AUV. However these need much more fine tuning as they continue to be an area of concern.


Manoeuvring System.         Control surfaces, Vectored propulsors or thrusters are generally used for AUV manoeuvres. For hovering, lateral or vertical movement multi thrusters are utilised.


Communications System.  Communication is essential for an AUV while submerged or surfaced. Acoustic systems are usually used underwater. Emergency beacons, locating mechanisms in emergency or on completion of mission are also built in an AUV.


Masts.             This is a complicated design feature as it impacts the launch and recovery of an AUV. The masts are used for mounting sensors, communication and navigation antennas.


Sensors.        Sensors can be put into following groups: conductivity, temperature, and depth (CTD) sensors, acoustic sensors; electromagnetic sensors; magnetic sensors; optical sensors; and Chemical, Biological, Radiological, Nuclear and Explosives (CBNRE) sensors.


Navigation.    GPS can only be used by AUVs when they are near the surface, for underwater navigation they use Inertial Navigation System (INS) and Doppler Velocity Log navigation systems. Gyroscopes for orientation, accelerometers for velocity changes and propeller turn rates for speed measurements form the main components of the INS. The Doppler shift provided by the down-track and cross-track sonar returns which give accurate speed and course.


Host Interface.          Host interfaces form one of the most important aspects of AUV design. These include both the software and the hardware interfaces with which the AUV communicates with its controlling vessel. Launch& recovery, signal, control and power are some of the interfaces required.


Combat Payload.     This may include specially designed torpedoes, missiles or mines.


AUVs in the US Navy


In the US Navy the Unmanned Undersea Vehicle (UUV) program was launched with the aim of shaping, controlling and enhancing intelligence about the undersea battle space. The nuclear attack submarines (SSNs) were to be aided by UUVs in gaining access to denied areas (for e.g. mined, shallow littorals, obstacle infested etc.) through the use of UUV sensors and weapons which would surreptitiously gather information and clear hindrances. The UUVs were to enhance the SSN missions of undersea environmental sensing & mapping, mine warfare and Intelligence, Surveillance, & Reconnaissance. UUVs were perceived to play a significant role in maintaining undersea dominance of US submarines.
Mine warfare support was the initial requirement to provide SSNs with UUVs. The Near-Term Mine Reconnaissance System (NMRS) with the submarines includes two UUVs linked to the submarine by fibre-optic cable, and is deployed through the submarine’s torpedo tubes. It provides a preliminary, limited mine-detection and classification capability. The Long-Term Mine Reconnaissance System (LMRS), launched from the submarine’s torpedo tubes, is an AUV that uses acoustic and radio-frequency links rather than a fibre optic link. SSN’s mine hunting capabilities were expected to be greatly enhanced by the LMRS. The LMRS is a complex AUV that operates secretly from a nuclear submarine and utilises submarine’s torpedo tubes for launch and recovery.  The LMRS is a self-propelled 21-inch diameter AUV AN/BLQ-11 fitted with search and classification sonars for locating mine-like objects as much as 200 kms ahead of the submarine. LMRS has both forward-looking sonar and side-scan synthetic aperture sonar. It has been developed by Boeing Defence space and Security (BDS), and was successfully proved on USS Scranton (SSN-756).

The Navy’s 21″ Mission Reconfigurable Unmanned Undersea Vehicle System (MRUUVS), which is launched and recovered from submarine torpedo tubes, is being developed to independently gather required information. Each MRUUVS includes a vehicle, equipment for, mine countermeasures, combat & control interfaces, and intelligence surveillance, & reconnaissance missions (ISR). The Littoral Precision Undersea Mapping Array (LPUMA) was developed as a part of this project for identification and avoidance of obstacles. Mine identification capability was demonstrated in an improved model of LPUMA which was deployed on a 21″ vehicle.

Other programs worth mentioning are; Remote Environmental Measuring Units (Remus) which is a small AUV, that can be launched by hand from a boat/shore to survey a desired under water area; Battlespace Preparation Autonomous Underwater Vehicle (BPAUV) which is  a much bigger AUV and used for a much larger area; The Littoral Battlespace Sensing–Unmanned Undersea Vehicle program (LBS-UUV) which  provides a low-observable, continuous capa­bility to enable predictions in case of performance of optical weapon and sensors by typifying  properties of the ocean that have influence on the propagation of light and sound. Under this project, electrically pow­ered AUVs (LBS-AUV) and buoyancy-driven undersea gliders (LBS-G) would be developed. These would enable planning and execution of anti mine, anti-submarine, and expeditionary warfare. They will also enable intel­ligence preparation of the environment (IPOE). LBS-AUV has reached full-rate production stage in June 2012, two engineering design models have been delivered to the Naval Oceanographic office; by FY 2017 a total of eight vehicles will be delivered. It has been developed by Teledyne and Hydroid.

Two major programmes in developmental stage as articulated by the US Navy are; The Large-Displacement UUV (LDUUV) which will provide long en­durance, persistent, multi-mission unmanned undersea vehicle capability for the Navy and will contribute to the joint Air-Sea Battle across all phases of operations. LDUUV initial operational capability is expected in FY 2021; The Persistent Littoral Undersea Surveillance (PLUS) System is a cluster of networked AUVs and gliders providing an effective, persistent, adaptive and passive acoustic undersea surveillance capability. PLUS monitors shal­low-water environments from fixed positions on the ocean floor or moves through the water to scan large areas for extended pe­riods of time.

Some leading companies in the field of AUV manufacture are (the details provided have been culled from the website of the companies):-

Bluefin Robotics.     In 1997, Bluefin was founded by a core group of engineers from the MIT AUV Laboratory, now it is a wholly-owned subsidiary of the Battelle Memorial Institute. It develops, builds, and operates Autonomous Underwater Vehicles (AUVs) and related technologies for defence, commercial, and scientific use. Bluefin has designed over 50 different configurations of modular, free-flooded AUV platforms, and over 70 different sensors. Bluefin provides full AUV lifecycle support encompassing; research and development, technology integration, manufacturing, platform training, and operations support. Its products include Bluefin 9, Bluefin 12S, Bluefin 21, Spray Glider etc. The Bluefin-9 is a lightweight, two-man-portable AUV with a mission turnaround time of less than 15 minutes. Equipped with a side scan sonar and camera, the Bluefin-9 provides the performance of much larger AUVs in a convenient and rapidly deployable package. The Bluefin-21 is a highly modular AUV able to carry multiple sensors and payloads at once. It claims a high energy capacity that enables extended operations even at the greatest depths. The Bluefin-21 has huge capability but is also flexible enough to operate from various ships of opportunity worldwide. The Bluefin Spray Glider is a deep-diving, buoyancy-driven AUV. The Spray Glider collects water column data profiles using a pumped, conductivity-temperature-depth (CTD) sensor and other instruments. Deployments of up to 6 months can be achieved with a single set of batteries.

Kongsberg Maritime.           They design and manufacture the HUGIN, REMUS and SEAGLIDER product lines of commercial off the shelf (COTS) AUVs. These AUVs have different capabilities and different applications and roles. Its HUGIN AUVs are being used commercially and in the Navy.  Hugin has been operated in various parts of the world including tropical waters and the Arctic. Kongsberg Maritime’s Remus vehicles are used in a wide number of applications in navies, hydrography and marine research. It has delivered over 200 REMUS vehicles. The MK 18 Mod 2 Kingfish UUV is based on the REMUS 600 and has increased area coverage rate, increased endurance, and serves as a platform for advanced sensors. The Kingfish Small Synthetic Aperture Sonar Module configuration provides wider swath, higher resolution imagery, and buried target detection. It has been deployed by the US Navy in the 5th fleet area of responsibility in June 2013.

Its SEAGLIDER™ has changed the way that oceanographic data is collected. SEAGLIDER’s extremely long endurance allows collection of data at a fraction of the cost of traditional methods. Naval planners, researchers, and commercial enterprises are using these vehicles in a wide variety of applications.


UUVs have undergone over three decades of development and experimentation effort spearheaded by the US Navy. Their rapid induction in large numbers is likely to revolutionise naval operations itself. What they would provide in near future is:-

– increased intelligence and on-board decision making by use of different unmanned vehicle types AUVs, ROVs, Gliders etc.

– Much more effective mine counter measures and rapid environmental assessment by use of Synthetic Aperture Sonar.

-Induction of propulsion technology from gliders into AUVs to extend their range considerably.

-Increased connectivity, efficient recharging and reliable docking.

-the birth of a new class of smarter weapons, for use from AUVs.



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s