Category Archives: Emerging Technologies

Hybrid warfare-The Naval Dimension

(Published IndraStra Global 01 Jan 2017,

 It is so damn complex. If you ever think you have the solution to this, you’re wrong, and you’re dangerous. You have to keep listening and thinking and being critical and self-critical.

Colonel H.R. McMaster, 2006

In his monograph, Strategic Implications of Hybrid War: A Theory of Victory[1],Lieutenant Colonel Daniel Lasica posits that hybrid force actors attempt to combine internal tactical success and information effects regarding enemy mistakes through the deliberate exploitation of the cognitive and moral domains. In this manner, he describes hybrid warfare simultaneously as a strategy and a tactic because of the blending of conventional, unconventional, criminal, cyber and terrorist means & methods. A hybrid force is thus able to compress the levels of war and thereby accelerate tempo at both the strategic and tactical levels in a method faster than a more conventional actor is able to do. In this theoretical model, the hybrid actor will always gain a perceived strategic advantage over the conventional actor regardless of tactical results. David Sadowski and Jeff Becker, in their article “Beyond the “Hybrid Threat: Asserting the Essential Unity of Warfare,[2]” assert, that the idea of simply seeing hybrid warfare as a combination of threat categories or capabilities fails to appreciate the complexity of the hybrid approach to warfare. Rather, they argue that the essential aspect of hybrid warfare is the underlying unity of cognitive and material approaches in generating effects. Such a unity of cognitive and material domains allows for flexibility in a strategic context in which social “rules” can be redefined in an iterative process to the hybrid’s advantage in terms of legality and military norms.

Majors Mculloh and  Johnson in their monograph ‘Hybrid warfare’[3] have said that hybrid war may be best summarized as a form of warfare in which one of the combatants bases its optimized force structure on the combination of all available resources—both conventional and unconventional—in a unique cultural context to produce specific, synergistic effects against a conventionally-based opponent.

 Don’t ever forget what you’re built to do. We are built to solve military problems with violence.

– A Former Brigade Commander in Op Iraqi Freedom

Therefore, it will not be wrong to say that Hybrid warfare in naval context is a violent conflict utilizing a complex and adaptive organization of regular and irregular forces, means, and behavior across a predominantly maritime domain among others to achieve a synergistic effect, which seeks to exhaust a superior military force.

Alternatively, put simply, it is naval irregular warfare plus cyber war and any other component that emerges in future. CIA has succinctly brought out the contrasting dimensions of Modern versus Irregular warfare in the following table:

Contrasting Dimensions of War[4]
Modern Irregular
Organized Informal
Advanced technology At-hand technology
Logistics-dependent Logistics-independent
National direction Local direction
Coherent doctrine Ad hoc doctrine
Decisive battle Raids and skirmishes
Soldier Warrior
Allies Accomplices
Segregation Integration

Littoral areas and cities in vicinity of the coast could be important sites of future conflict, and both have characteristics that make them more complex than the high seas, and hinterland. Adversaries will increasingly exploit these complex environments to degrade technological advantages of regular forces. Given the close proximity of many cities to the coast as well as abundance of unmanned coastal areas, maritime hybrid is a distinct possibility requiring active involvement of the Navy and the Coast guard. In case of a maritime hybrid war the normal components of the Navy would continue to play an important part in the littorals and in open seas for interdiction of adversary’s irregular assets like floating armories and mercenary flotillas.

Maritime forces are often utilized primarily in support of ground operations, but it is seen that; in environments with a maritime component; maritime operations tend to have a noticeable comparative advantage over land-based operations in terms of mobility, freedom of maneuver, and the ability to impose a smaller or less visible footprint on land. The maritime forces could easily choke supplies through the sea route to reach adversary, protect own maritime trade and fishing in the area, provide logistic and fire support to forces on land from the sea, close escape routes and so on. One important point is that vital external maritime support can be conveniently obtained from friendly nations at sea for ISR, communications and fighting cyber war. The supporting ships could be operating as close as just 12 miles off the coast or hundreds of mile in open seas without violating any regulations.

Now it would be appropriate to look at a few of the salient features of 26 Nov 2008 Mumbai attack as relevant to subject at hand. The Mumbai attack has been analyzed in great depth by various agencies (for e.g. Rand’s ‘Characterizing and Exploring the Implications of Maritime Irregular Warfare’[5] and ‘The Lessons of Mumbai[6]’) and individuals, therefore an attempt is being made here to highlight the main findings of some of these studies. In addition to the meticulous planning, reconnaissance, likely pre-positioning of weapons & ammunition, the major innovation on the part of the terrorists was the real-time exploitation of the international media. Each of the terrorists carried a BlackBerry smart phone to monitor CNN and BBC Internet coverage of the attack in real time. They then immediately adjusted their tactics to increase the amount of media coverage that the attacks would receive. It is believed that the major efforts made by the terrorists to kill U.S. and British civilians were part of the plan to garner more international press coverage.

The case of the LeT attacks in Mumbai illustrates the advantages that could accrue to an adversary from a maritime approach to a target. A maritime approach allows operatives to avoid border crossings and airport security, it offers opportunities to hijack a local vessel so that attackers can blend in with the normal local coastal traffic, and offers terrorist teams extra time for pre-attack planning as well as extra time for rest just before the attack commences. Finally, a maritime insertion allows terrorists to select very precise landing sites and infiltration routes.

The case of the LeT attacks in Mumbai also illustrates the disadvantages that can accrue to a terrorist enemy from a maritime approach to a target. First, once a full blown, large-scale assault has started, it can be very difficult to extricate the operatives. Second, the transport of large explosives aboard fishing vessels and trawlers is risky; thus, maritime terrorist strikes might be limited to relying on small arms to do their damage. Third, some kind of reconnaissance cell would have to be sent to the target city well in advance of the attack, providing an opportunity for a skilled intelligence agency to mount surveillance on the reconnaissance cell and break up the plot before the assault team could embark. Moreover, a maritime approach does not allow the terrorist team to disperse until it lands ashore. Even if the operatives approach in two or three different small boats, the interception of just one of the boats could drastically reduce the team’s numbers and effectiveness.

The fact remains that despite low technological instrumentation, a non state/state sponsored actor coming from open sea, could carry out effective surveillance & reconnaissance regarding the characteristics of targets at land/sea that could be attacked in future. Maritime Hybrid War may graduate to pose bigger economic threat than a military one. Furthermore, these economic costs could be imposed with relatively minor investments from the adversary.

What is worrisome is that now the Hybrid threat can emerge from anywhere in the vast oceans; be it floating armories, mercenary flotillas, or innocuous vessels carrying legitimate cargo with an embedded cyber war-waging cell. The maritime hybrid threat has to be interdicted using Naval and marine assets preferably before it reaches the shores and synergizes with other elements into a full-scale hybrid war. Even though the Indian Government has strived to put in place a very robust MDA there are intelligence gaps, which remain among the various agencies involved which could lead to slipping in of threatening elements physically or otherwise.

“The categories of warfare are blurring and do not fit into neat, tidy boxes. We can expect to see more tools and tactics of destruction — from the sophisticated to the simple — being employed simultaneously in hybrid and more complex forms of warfare.”

Professor Colin Gray

Cyber War

A word about the maritime dimension of cyber war would be proper at this stage. In recent years, there has been considerable discussion of the phenomenon of cyber warfare, its methods, and its ramifications. In essence there are three objectives that can be achieved by cyber-offensive activities: espionage (infiltrating the target’s information storage systems and stealing information), denial of service attacks (preventing Internet usage), and sabotage (infiltrating systems reliant on Internet connections and causing functional damage via malevolent programs). The media largely focuses on the use of computer programs as weapons in the cyber domain, but an attack on Internet infrastructure especially the submarine optical fiber cables is no less an option for terrorists, and often more devastating and effective. In fact, thousands of miles of more than 200 international submarine cable systems carry an estimated 99% of all the world’s trans-oceanic internet and data traffic. Widespread disruption to undersea communications networks could sabotage in excess of $10 trillion in daily international financial transactions, as stated by Michael Sechrist in a 2012 paper ‘New Threats, Old Technology Vulnerabilities in Undersea Communications Cable Network Management Systems[7]’ published by the Harvard Kennedy School. It is pertinent to note that satellites carry just about 5% of global communication traffic.

Even partial damage has extensive consequences because of the resultant jamming of traffic on the limited remaining connection. It is true that the diplomatic and military effects of having Internet communication with world at-large cut off would not be significant, but the direct and indirect economic consequences could be extremely expensive to our economy, especially with the transfer of much data to online cloud services that are actually placed abroad.

What bigger Hybrid threat can be posed at sea than the cutting off the subsea internet cables at time, place, and depths of one’s choosing or cutting off undersea facilities like VLF communication nodes and hydrophones? Would it not be an example of extreme denial of service weapon? Incidentally, such capabilities do exist with some nations today.

Two other aspects of hybrid war, which merit immediate attention of the maritime forces, are onslaught of sensors and swarm warfare.


One very important aspect of the Hybrid warfare is transparency in every field because f utilization of various types of sensors. This ubiquitous sensing revolution promises enhanced awareness of physical, social, and cyber environments by combining three technological trends: the proliferation of ever cheaper and more capable sensors into virtually every device and context; large data aggregation and ready access to it using vast cloud-based archives; and cross-spectral data fusion & sense-making algorithms running on increasingly powerful processors. All of these trends are accelerating, at exponential rates. For instance, as brought by Capt John Litherland, USN (ret), in his paper ‘Fighting in the Open: The Impact of Ubiquitous Sensors on the Future Maritime Battle space’[8]:

-The worldwide total number of sensors has increased tremendously and will pass the one trillion mark, or more than 100 sensors for every person on earth.

– Mass production of electronics has led to significant enhancements in Sensing capabilities. Every smart phone today has a complete inertial, electronic and satellite navigation system comprising just a minor component of its price. Incidentally, a smart phone today hosts of many  of the sensors such as, accelerometer, temperature, gravity, gyroscope, light, linear acceleration, magnetic field, orientation, pressure, proximity, relative humidity, rotation vector and temperature[9].

-The worldwide digital data generation rate now exceeds one ZB (1021 bytes) per year and global storage exceeds 10 ZB.

-The ability to fuse and make sense of unstructured data from disparate sensors and incommensurable formats is being addressed by use of advances in processing capability and data handling algorithms.

-The advent of sensors has however, made the battle space transparent. Today, the warfare has to adapt to this transparency and let go traditional concepts of concealment and camouflage. Stealth technologies are unable to cope up with concealing signatures of the multitude of sensors being used across various domains, be it in the air, on the surface or under water. Navies today can no longer spring a surprise on the adversary because it is not feasible to operate blind in a battlefield littered with multi-spectral sensors, dispersed spatially, and operating in broadband.

The Indian Navy (IN) has to prepare for this aspect of hybrid warfare. The Indian Navy could utilize some of the concepts out lined by Litherland in his paper quoted above[10] :

– Dispersal – IN forces must disperse over as much of the maritime battle space as possible.

– Deception – IN must strategize on targeting the adversary’s sensor complex across multiple spectra with noise, false targets, and cyber attacks.

– Range – IN must gainfully implement Net Work Centric warfare to bestow ‘crippling effects’ at large distances when dispersed.

– Speed – together with range, the speed at which kinetic and non-kinetic effects can be imposed on the adversary will also be a critical factor in Naval war.

Unless the Indian Navy starts preparing now to fight in the Age of Sensors, it risks becoming vulnerable in the event of a hybrid war.


Seminal work has been done on Swarm warfare by Prof. John Arquilla  and David Ronfeldt in their various writings (Swarming and Future of Conflict[11], Countering and exploiting Swarms[12], etc.) the present section derives from their thought processes. Swarm warfare has become the dominant doctrinal concept of certain navies like the Iranian Revolutionary Guard Corps Navy, which has about fifty missile and torpedo boats, along with other light coastal craft, all of which train to employ ‘ESBA’ i.e. like a swarm of bees tactics. The IRGC Navy also has several bases on small islands in the Persian Gulf, from which they can “swarm by fire” with the Chinese missiles in their inventory. China’s PLA Navy regularly practices swarm tactics with its missile, torpedo, and gunboats.

For the Indian Navy, comprised as it is of a number of high-value vessels, swarms pose a considerable and rising threat. Swarm attacks are likely not only from small boats, but also from aircraft, submarines, and drones. At present, the author is unaware of any fitting response by the Indian Navy focused on the use of counter-swarms of drones, and robots. The Indian Navy should also consider responses; as suggested by Prof  Prof. John Arquilla[13];  by designing swarms of much smaller craft like large numbers of jet-ski-sized drones or autonomous weapons whose goal would be to seek out and destroy incoming swarms with rockets, or by ramming and self-detonating. Small and swift Weapons could pose a far superior swarming threat to hybrid adversaries. IN could also think of small undersea swarming systems which are already on the design board to meet demands of clearing minefields, engaging enemy submarines, and carrying out ISR missions. Similarly, small aerial swarm weapon systems could prove exceptionally useful in dealing with air defense of carrier strike groups.


So ‘ere’s to you fuzzy-wuzzy, at your ‘ome in the Soudan; You’re a pore benighted ‘eathen, but a first class fightin’ man. 

Rudyard Kipling

Starting with the fundamental definition of Hybrid war in maritime context as “Naval irregular warfare plus cyber war and any other component that emerges in future”, the implications of cyber, sensors, and swarm warfare have been discussed in this article. However, new types of hybrid threats would keep surfacing and the IN has to be ready for them when called upon to counter them.

Hybrid war, being inherently nebulous and dynamic in nature, calls for constantly adapting naval doctrines and technologies to meet the emerging maritime hybrid threats.

(Based upon a talk ‘Maritime and Air Dimensions of Hybrid War’ delivered by the author during ‘National Seminar: Hybrid Warfare’ on 02 Nov 2016 under aegis of Centre for Land Warfare Studies, New Delhi)













[13] ibid

Military Applications of Blockchain Technology

(Published 23 Nov 2016, CLAWS)

“Blockchain protocols are a new class of protocols that are extremely resilient to attack ‒ they gain that resiliency by virtue of being decentralized,”

Professor Emin Gun Sirer, Cornell University

Blockchain technology is fundamentally a mutually trustable storage facility for information of a transaction between multiple users. It is a decentralized and secure way to record, share, store, and redistribute information. There is no central authority controlling the Blockchain, it is run, monitored, and owned by everyone. Anyone can download it free and run it or develop it for new applications/types of transactions, just like an open source code. It enables verification of the transactions at any time without impinging upon privacy of the involved parties. Blockchain technology has the capability to become a disruptive technology during the current decade itself.

“A Blockchain is a magic computer that anyone can upload programs to and leave the programs to self-execute, where the current and all previous states of every pro­gram are always publicly visible, and which carries a very strong crypto-economically secured guarantee that programs running on the chain will continue to execute in exactly the way that the Blockchain protocol specifies.”

 Vitalik Buterin of Ethereum

Two main pillars of Blockchain technology are the ‘distributed consensus’ and ‘anonymity’[i]. It has applications in both the financial and the non-financial fields. In the non-financial sector major companies like IBM, Amazon, Samsung etc. are exploring innovative ways in which to use the Blockchain technology. The near term possibilities include putting ‘proof of existence’ of health data, legal papers, registry certificates (birth, marriage, death), digital trail of assets etc in the Blockchain.

IBM and Samsung have developed a system called ADEPT[ii] (Autonomous Decentralized Peer To Peer Telemetry) that uses design concepts of Bitcoin to construct a distributed network of Internet of Things. The ADEPT utilises three protocols-BitTorrent (file sharing), Ethereum (Smart Contracts) and TeleHash (Peer-To-Peer Messaging).

In the financial sectors, big banks find Blockchain to be a secure and reliable technology and are looking into a host of applications. R3, a financial technology firm is creating a framework for financial applications[iii] using Blockchain technology for a consortium of 15 leading banks. R3’s Corda distributed ledger platform was used by the banks to design and use self-executing transaction agreements. Two prototypes were created using distributed ledger technology for smart contracts. The consortium included Barclays, BBVA, BNP Paribas, Commonwealth Bank of Australia, Danske Bank, ING Bank, Intesa Sanpaolo, Natixis, Nordea, Scotiabank, UBS, UniCredit, US Bank and Wells Fargo.

Military Applications

The NATO Communications and Information Agency is currently evaluating for proposals in areas of application of Blockchain technology to military logistics, procurement and finance, Internet of Things, and other applications of interest to military. The proposals have been submitted as part of the 2016 Innovation Challenge[iv] aimed at accelerating transformational, state-of-the-art technology solutions in support of NATO C4ISR and cyber capability requirements.

US DoD had raised a critical need for a secure messaging and transaction platform accessible via web browser or standalone native application. DARPA has therefore sought proposals vide SBIR 20162[v] to “ Create a secure messaging and transaction platform that separates the message creation, from the transfer (transport) and reception of the message using a decentralized messaging backbone to allow anyone anywhere the ability to send a secure message or conduct other transactions across multiple channels traceable in a decentralized ledger.”

“Whenever weapons are employed … it tends to be a place where data integrity, in general, is incredibly important,” …“So nuclear command and control, satellite command and control, information integrity is very important.”[vi]

Timothy Booher,  Blockchain program manager, DARPA

Critical Weapon Systems. DARPA has awarded a $1.8 mn contract[vii] to Galois for their Blockchain application Guardtime Keyless Signature Infrastructure KSI, to Verify Integrity Monitoring System for its potential to build a form of unhackable code for an enhanced security in critical weapon systems. KSI can detect advanced persistent threats (APTs) which work to remain hidden in networks. Galois works in the area of formal verification, which is a technique that provides mathematical assurances that a system works only as intended in all cases.


Blockchain is a promising technology. However, as is the case with all new technologies, following is relevant:

-users would have to get  used to the fact that under Blockchain technologies electronic transactions are safe, secure and complete.

-since it is in its nascent stage, scaling up presents issues which need to be resolved.

-legal frame work has to be modeled to include Blockchain technology.

-Migration of systems from existing centralized databases and systems could be tedious and expensive.









New Nukes on the Block?

(Published 06 Jun 2016, CLAWS)

‘As long as the United States continues to have nuclear weapons, we must ensure that they remain safe, secure, and effective without the use of underground testing,”

Don Cook, NNSA Deputy Administrator for Defense Programs[1]


In October 2015, USA completed testing of upgraded Nuclear Earth Penetrating bomb B61-12. The aim was to extend the life of B61 Mod 7 and Mod 11 strategic bombs by 20 years[2]. The upgrades include scalable nuclear yield (The B61 family of weapons can be configured with a wide variety of yields, including 0.3, 1.5, 5, 10, 45, 60, 60, 80, 170, and 340 kilotons), precision guidance and advanced safety mechanisms.

It is understood that strategic assets like ballistic missile facilities, command, control & communication centers, shelters for political leadership etc are located in tunnels at depths varying between 200 meters to 700 meters. These have been termed as strategic “hard and deeply buried target (HDBT)” by NATO countries and it is against such targets that Nuclear Earth Penetrating bombs are intended to be used.

Conventional weapons have the capability to penetrate to depths as much as the nuclear earth penetrator weapons (NEPW) but they are not as effective against the HDBTs. The energy transfer of NEPWs into ground is far more effective than surface or aerial bursts of even nuclear weapons. It is said that a 300-kiloton NEPW is as effective as a 6-megaton surface burst against HDBTs. Further, the accuracy requirements (Circular Error Probable, CEP) for surface bursts are more stringent than NEPWs for HDBTs to achieve the same kill probabilities. This brings in to focus two facts viz. that NEPWs require much less radioactive material and that with increasing accuracy of hit the damage potential keeps on increasing.

Sandia National Laboratories have been carrying out research work on the Earth Penetrators since the 1960s. One of their newer programs is the feasibility study program “Robust Nuclear Earth Penetrator program (RNEP)”. The aim of this program is to study feasibility of designing RNEPs which, can tackle a larger number of targets than the B61-11. The general terms of reference indicate that RNEP should be capable of reaching a specified depth, should be able to survive and penetrate the target, and should perform better than B61-11in terms of functionability, safety, security, & reliability. Sandia National Laboratories have the credit of building the most complicated nuclear safety mechanism called the ‘Micro Guardian’ in 1990s. This ensures that the nuclear weapon does not detonate until a predefined sequence of events is completed. It is said that the size of this system is 10 mm x 6 mm x 5 mm, and it forms a part of the optical micro-firing system[3]. These developments highlight the march of Micro electro-mechanical systems (MEMS) as well as the Nano electro-mechanical systems (NEMS) into the nuclear arsenal arena.

It need not be stressed that arming and detonation of a nuclear weapon should not take place accidentally, however it is also to be ensured that the bomb once armed must not only hit the designated target but also explode. These conditions present a formidable technological challenge in designing of the arming, fusing, and firing mechanisms of  nuclear bombs. This requires requisite robustness and multiple redundancies as also assured reliability of functioning. The MEMS/ NEMS have gained credibility mainly due to their compactness and minimal moving components as compared to the early analogue as well as digital counterparts. Programs such as the RNEP of Sandia National Laboratories would not only benefit NEPs but also conventional weapons as well. The availability of such devices and the fact that they have improved the resistance to failure of key components in fusing, arming, detonators, and neutron generators by many magnitudes has spurred research into next generation of nuclear weapons.

Though the consensus over the term Fourth Generation of nuclear weapons is still debatable, it can be safely stated that it would invariably be those classes of nuclear weapons which are triggered using advance triggering mechanisms such as  super lasers, magnetic compression or antimatter (this also under active research!!). This would than result in a thermonuclear explosion of a few liters of deuterium-tritium mixture (equivalent of hundreds of tons of TNT). The main source of yield would not be fission reaction of the first three generations but a distinct fusion reaction, which would classify the next generation.

The stage is set for, NEMS to usher in unprecedented robustness, reliability, and precision in CEP, nEMs to replace conventional explosives and provide much greater explosive power[4], and advanced triggering devices & fusion yields to herald fourth generation nuclear weapons. The possessor would not only be able to unleash a swarm of conventional weapons but also carryout devastating assault without breaching the kiloton/ megaton taboo of first strike!






Nanoenergetic Materials (nEMs) in Conventional Ammunition

(Published on 17 May 2016, CLAWS,

Nanoenergetic Materials (nEMs) in Conventional Ammunition

 Nanotechnology “could completely change the face of weaponry,”

Andy Oppenheimer, Jane’s Information Group[1]

On 11 September 2007, Russians tested Father of All Bombs (FOAB), an Aviation Thermo baric Bomb of Increased Power (ATBIP). It was said to be the most powerful conventional bomb in the world, with a 7-Ton explosive mixture resulting in a devastating effect equivalent to 44 tons of TNT[2]. It was hinted that the FOAB contained a liquid fuel, such as ethylene oxide, mixed with energetic nano-aluminium powder, which was dispersed by a high explosive booster. Some reports speculated that the liquid fuel was purified using nano-filters. What caught the imagination of defense experts was the fact that the Russian FOAB had less fuel than the similar US device Mother of All Bombs (MOAB), the GBU-43/B Massive Ordnance Air Blast bomb, but was four times more powerful. It was also probably the first time that the nonprofessional learned of the lethal uses of nanotechnology. Not much information is available through open sources about the developments involving nanotechnology in explosives, much of it has to be gleaned from research papers and patents (for e.g. Patents like US6955732 – Advanced thermo baric explosive compositions and WO2013119191A1 – Composition for a fuel and air explosion).

            Since 2004, ‘Combat Safe Insensitive Munitions’ concept has shifted the focus of safety from a pure materials approach to making marine explosives insensitive to a platform based approach based upon mechanics to increase insensitivity[3]. US Navy has been at the forefront of R&D into new energetic materials since a long time and it is opined that nanotechnology enabled energetic materials would form the backbone of the future defense systems. Timely induction of nano enabled energetic systems with controlled energy release is the focus of current research at institutes like the U.S. Naval Academy, Naval Surface Warfare Center, and the University of Maryland.

            In simple terms, Nanoenergetic materials (nEMs) perform better than conventional materials because of much larger surface area, which increases speed of reaction and larger energy release in much shorter time. Addition of Superthermites[4] (nano-aluminium based) have shown instantaneous increase in explosive power of existing compositions[5]. Further, use of nano-sized materials in explosives has significantly increased safety and insensitivity by as much as over 30% without affecting reactivity. It is predicted that nEMs would provide the same explosive power at mass up to two orders of magnitude less than the current explosive systems[6].

In rocket, propellants nEMs have shown similar capabilities at Los Almos National Laboratories with nitrogen-energized nEMs[7]. In addition, incorporation of more than one burning rate in rocket propellants has given rise to novel design options by creating grains with continuously varying properties along the length as well as across the radius of the grain in Functionally Graded Materials (FGM).

While Nanosizing of high explosives leads to increasing their explosive power[8] and decreasing their sensitivity to external forces[9], it also decreases its thermal stability. The shelf life of such explosives could therefore stand reduced, however, some patents reveal that this issue has also been resolved technically (e.g. patent US20120227613 Thermal enhanced blast warhead). In India the work on explosives and propellants is being undertaken at HEMRL, a DRDO laboratory, and it is understood that the research in nEMs is progressing satisfactorily.


Nanotechnology is permeating in all fields of design & manufacturing of weapons and ammunition. It is bringing unprecedented precision in weapon systems, robustness in triggering mechanisms and opening new frontiers in propellant and pyrotechnic functioning. In addition to explosive and propellants, Nanomaterials have ushered in innovative improvements in many characteristics of ammunition such as guidance, penetration capacity, embedded sensors for monitoring condition, embedded antennae for guidance and so on.

It can be envisaged that nEMs would replace the conventional explosives in the next decade. This would provide existing conventional weapons with explosive powers higher in magnitude by a factor of two and enhance the safety to external stimulation by at least 30%. In simple terms, a missile warhead having an explosive content of 200 kg of TNT equivalent would have an explosive power of 20,000 kg of TNT equivalent when substituted with nEMs material of same weight of 200 kg!

This advancement could displace Tactical nukes from the battlefield.

What can also be foreseen is the mushrooming of new classes of extremely precise and lethal small/micro weapon systems, which could be scaled down by at least second order of magnitude from the current systems. Thus creating space for the likely paradigm shift from bigger & larger to the smaller & numerous holdings of weapons. This in turn would herald the era of Swarm Warfare.

[1] Gartner, John. “Military Reloads with Nanotech.” Technology Review, an MIT Enterprise, January 21, 2005.


[3] Insensitive munitions:

Improve the safety and survivability for Armed Forces and civilians in urban areas or near combat zones because they can safely be stored at closer distances. Reduce the vulnerability of platforms and resources against unintended or hostile aggression, violent reactions with blast overpressure and fragmentation damages are under control. Maximize the storage capabilities and improve flexibility logistics: IM can safely be carried by land/sea/air; storage platforms can be closer together and are key to Inter-Operability between the Armed Forces.

[4] Nano-Thermite or Super-Thermite is a metastable intermolecular composite (MICs) containing an oxidizer and a reducing agent, which are intimately mixed on the nanometer scale. This dramatically increases the reactivity relative to micrometer -sized powder thermite. MICs, including nano-thermitic materials, are a type of reactive materials investigated for military use, as well as for general applications involving propellants, explosives, and pyrotechnics.

[5] Gartner, John. “Military Reloads with Nanotech.” Technology Review, an MIT Enterprise, January 21, 2005.

[6] Yang, Guangcheng, Fude Nie, Jinshan Li, Qiuxia Guo, and Zhiqiang Qiao. “Preparation and Characterization of Nano-NTO Explosive.” Journal of Energetic Materials, 25, 2007.

[7] Tappan, B.C., S.F. Son, and D.S. Moore. “Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials.” Shock Compression of Condensed Matter, American Institute of Physics, 2005

[8] Kaili Zhang, Carole Rossi, and G.A. Ardila Rodriguez. “Development of a Nano-Al/CuO Based Energetic Material on Silicon Substrate.” Applied Physics Letters No. 91, 14 September 2007.

[9] Guangcheng Yang, Fude Nie, Jinshan Li, Qiuxia Guo, and Zhiqiang Qiao. “Preparation and Characterization of Nano-NTO Explosive.” Journal of Energetic Materials, 25, 2007.

Neuromorphic Chips – Defence Applications

(Published Claws 30 Apr 2016 )


..And I had an opportunity to grow from the time where we couldn’t make a single silicon transistor to the time where we put 1.7 billion of them on one chip!

                                                                                 Gordon Moore, Cofounder Intel

Last year Kris Gopalakrishnan pledged $ 50 mn at IISc and IIT Madras on research that seeks to model next level computing based on the functioning of the Brain.[1] Neuromorphic engineering is an emerging interdisciplinary field that involves designing sophisticated devices based on the complex neural circuits of the brain. It uses principles of the nervous system for engineering applications to achieve a better understanding of computations occurring in actual biological circuits and utilize the unique properties of biological circuits to design and implement efficient engineering products. Neuromorphic chips aim to mimic the massive parallel computing power of the brain, circumvent the size limitations of traditional chips, and consume less power. It is also predicted that such chips could adapt in response to stimuli. As a technology demonstrator, P. Merolla et al [2] at IBM have developed a 5.4-billion-transistor chip (TrueNorth) with 4096 neurosynaptic cores interconnected via an intra-chip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. With 5.4 billion transistors, occupying 4.3-sq cm area TrueNorth has ∼428 million bits of on-chip memory. In terms of power, consumption where a typical central processing unit (CPU) consumes 50 to 100 W per sq cm the TrueNorth’s power density is 20 mW per sq cm only. This qualifies it to be a good candidate for ushering in green technology in to computing.[3] However, for purposes of clarity TrueNorth is not a brain, it is inspired by the brain[4] and mimics some functions of the brain to carry out computations.

Market for Neuromorphic Chips

The main factors, which have driven research and development of neuromorphic chips, are tremendous demand for data and data analytics, miniaturization of sensors, ingress of Artificial Intelligence into software of almost all intelligent machines and high cost of further miniaturization of integrated circuits. These factors have spurred the demand and growth of the market for neuromorphic chips, which is expected to grow at a CAGR of 26.31% between 2016 -2022.[5] One of the key areas where such systems would need break-through research would be in design of algorithms since biological systems autonomously process information through deep learning whereas any human designed chip or system would be limited by human designed algorithms. The applications areas currently comprise sensors in military as well as medical fields.

Military Applications

Militaries today are coping up with an exponential increase in the amount of data from a wide variety of sensors.  Unprecedented data collection has severely strained the limited available bandwidth for military use. The data needs to be processed, as close to the sensor as possible before further transmission therefore sequential computational techniques with their large size and power requirements are not very efficient in this regard. NeuroSynaptic chips can carry out this parallel task much more efficiently.

DARPA had initiated a project called Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE), in 2008 and had contracted it to IBM and HRL. It has funding of over $ 100 mn. The aim of SyNAPSE is stated ‘to build an electronic microprocessor system that matches a mammalian brain in function, size, and power consumption. Further, it should recreate 10 billion neurons, 100 trillion synapses, consume one kilowatt, and occupy less than two liters of space’.[6]

The US Army has projected a requirement for a high-performance, low-power bio-inspired parallel processor. This would be integrated in to cognitive communication systems and image processing platforms on unmanned vehicles. The project is being undertaken by Physical Optics Corporation (POC) under their BRAINWARE processor program.

The U.S. Air Force has projected a requirement to develop a new class of advanced, wide field of view (WFOV) imaging sensors that sample the radiation field in multiple modes: spectral, temporal, polarization, and detailed object shape. These multimodal sensors are for deployment on high altitude ISR functions of drones. Scaled down versions are required for use with autonomous micro-air vehicles (MAV) for guidance, navigation, and control. Two types of bio-inspired multimodal sensors, one operating in the visible wavelength regime, and the other operating in the infrared wavelength regime are being developed by The Spectral Imaging Laboratory (SPILAB) in collaboration with the University of Arizona. Both sensors will have a neuromorphic processing capability based upon visual brain areas of insects and crotalid snakes.


It is apparent that neuromorphic chip based computational systems scalable to the capabilities of the human brain are  a clear possibility provided an all-round research and development effort is synergized in hardware, software, architecture, and simulation & understanding of functioning of the brain. The neuromorphic chips as well as quantum computing have ushered in a paradigm shift from the focus on microchips to that of the system as a whole.

In the ultimate goal of mimicking the human brain, it is likely that development of artificial brains of smaller species or specific parts of the human brain may turn out to be more enchanting purely from a commercial point of view. The impetus to the rapid development in neuromorphic systems would be provided by the availability and applications of such systems for large-scale commercial utilization.



[3] Computational power efficiency for biological systems is 8–9 orders of magnitude higher than the power efficiency wall for digital computation;


[5] summary/Neuromorphic-Chip-Market-by-Application-End-User-Industry-and-Geography-Global-Forecast-Analysis-to.html


My Book “Negotiating the Acquisition of Nanotechnology in India”

My Book

My book

“Negotiating the acquisition of Nanotechnology in India” has been published by LAP Lambert Academic Publishing, Germany.


February 15, 2016



Nanotechnology represents one of those emerging ‘platform’ technologies that can provide much needed enhanced capabilities to defence of a country. The pervasive nature of nanotechnology research, and the important anticipated products that will influence future industrial products, implies the need to focus on areas where security concerns are likely to arise. Nations see strategic interests in nanotechnology; in that they hope to be in a position of strength to exploit arising opportunities, when nanotechnology starts to have considerable impact on global economy. The desire of a nation to emerge as an economic beneficiary (or a leader) through profitable use of nanotechnology would be dependent upon its diplomatic and negotiation skills with other nations in forging complex relationships which protect its national interests. The evolving of this industry in India through negotiation during TOT, Joint ventures/partnerships etc. is likely to shape the relationships and alliances India shares in the global arena.


Naval Sensors – a Perspective


(Published in SP’s Military Year Book 2015)

We may produce at will, from a sending station. an electrical effect in any particular region of the globe; we may determine the relative position or course of a moving object, such as a vessel at sea, the distance traversed by the same, or its speed. 

— Nikola Tesla, ‘The Problem of Increasing Human Energy’, The Century (Jun 1900)

Sensors ensure the survivability of a warship at sea during peacetime as well as hostilities. Warships at sea are buzzing with inputs from a multitude of sensors. A warship’s basic sensors are those whose outputs are required for practically all operations at sea. These include meteorological sensors, conductivity, temperature & density sensors, communication sensors, ships speed sensors or logs, depth sensors or echo sounders and satellite signal receivers. Apart from these, a ship utilizes Radar and Sonar for its peacetime and combat operations.

Basic Sensors

Meteorological Sensors. A warship requires accurate measurement of wind speed and direction, temperature, pressure, humidity and other local environmental parameters. This is required for various tasks including flight operations, gunnery, rocket and missile firings etc. AGIMET is one of the manufacturers for such systems.

Speed Log.  For measurement of a ship’s transversal and longitudinal speed, single and dual axis speed logs as well as dual axis doppler logs, are available. The speed logs provide ship’s speed, drift speed and angle at all times and in any depth. Raytheon Anshutz manufacture some of the popular ship’s logs.

Conductivity, temperature, and density (CTD) are used extensively for the measurement of temperature and salinity, as also for deriving parameters of density and speed of sound. Teledyne RDI Citadel CTDs fall under this category.

The Expendable Bathythermograph(XBT). It is used by warship to obtain an ocean temperature versus depth profile. It is useful for anti-submarine warfare (ASW) by warships and for anti ship warfare by submarines. Lockheed Martin Sippican has manufactured over 5 million XBT’s since the 1960’s.

Echo Sounder. Data consisting of the immediate depth and a record of soundings are required for navigation. Kongsberg’s EN 250 is one such navigation echo sounder.

Communication Systems. Navies use visual, sound, and electrical means for communications. Telecommunication includes in its ambit transmission, emission, signals, images, sounds, and intelligence information by visual, oral, wire, radio, or other electronic systems. Since these systems, fundamentally sense electromagnetic radiation these also come under the overall ambit of vital sensors for the Navy.

Satellite Signal Receivers for Communication and Navigation. As far as communication systems are concerned, use of satellites is fairly well understood and is common knowledge with deep inroads made by mobile telephony and internet. Methods of navigation have changed throughout history. Satellite navigation using radio signals from satellites for determining position have enhanced the mariner’s ability to complete his voyage safely and expeditiously. Modern integrated systems take inputs from various ship sensors, electronically and automatically chart the position, and provide control signals required to maintain a vessel on a preset course.


Radar has continued its dominance as a formidable sensor in both the civil and military domains. Post WWII a major improvement was to introduce moving target indicator (MTI) function by using Doppler Effect, where in it was possible to discriminate between a stationary and a moving target. This was followed by the Phased array antenna technology involving dynamic beam forming by combined operation of a number of individual transmitting elements. Strides in digital signal processing led to development of the synthetic aperture radar and consequently to high-resolution imagery.

Frequency Based Classification for the Navy. The frequencies that have been longest in use are in the band 3MHz to 300MHz. Over the horizon radar (OTH), and the early warning radars use the high frequency (HF) band 3MHz to 30MHz (e.g. Russian Woodpecker and US Navy’s AN/TPS-71 Re-locatable OTH radar). The accuracy in this type of radars however is compromised while gaining the range advantage. Very long-range early warning radars use the very high frequency (VHF) band in the range of 30MHz to 300MHz, or the ultra high frequency (UHF) band 300MHz to 1GHz, this band is very useful in detection and tracking of ballistic missiles. Frequency band 1GHz to 2GHz (L band) is used in naval applications of long-range air surveillance. The SMART-L naval radar has a phased array with 24 elements; it has a maximum range of 400km against patrolling aircraft and 65km against an incoming missile. The band 2GHz to 4GHz (S band) is used for Air Borne Warning and Control Systems (AWACS), Boeing E-767 AWAC aircraft uses the AN/APY-2 Pulse Doppler radar, it can determine the velocity of the target as well as distinguish between airborne and maritime targets from ground interference and sea clutter. The band 4GHz to 8GHz (C band) is used for weapon guidance; these are small but highly precise radars. An example is the TRS -3D naval radar for weapon guidance and surveillance, it uses a phased array in 3D for simultaneous detecting and tracking of multiple targets up to a range of 200km. It is designed for detecting sea skimming missiles and attack helicopters. The band 8GHz to 12.5GHz (X band) is used for maritime navigation and airborne radars. The naval Active Phased Array Multifunction Radar (APAR) works in this frequency band, it is capable of automatic detection and tracking of low-level sea skimmers up to 75km and is designed for carrying out terminal guidance requirements of ESSM and SM-2 missiles. The higher frequency bands from 12.5GHz to 40GHz are subject to very high attenuation, therefore are limited to very short ranges, and have applications in civil/police/research requirements. Some prominent radar systems are-

-Enterprise Air Surveillance Radar (EASR) is a development program for replacement for the SPS-48 and SPS-49 air surveillance radars currently on board US Navy’s amphibious ships and aircraft carriers by the 2020. Northrop Grumman has been awarded an 18-month contract for the study of the EASR requirement. The new radar system will utilize technologies from the AN/TPS-80 Ground /Air Task-Oriented Radar (G/ATOR) program.

-Empar (European Multifunction Phased Array Radar) is a G-band, multifunction, active phased array radar being developed by Selex for the Italian Navy and French Navy. Its rotating antenna at 60 rpm provides continuous surveillance, tracking, and weapons fire control. The Empar radar system will be integrated on the Horizon frigates ordered by Italy and France and the Italian Navy’s Conte di Cavour.

-Raytheon’s AN/SPY-5 is an X-band multi-tracking, target-illuminating system for surface combatants that can simultaneously search, detect, and precisely track multiple surface and air threats. The SPY-5 is an open architecture, phased-array radar system, providing an advanced self-defense solution for small and large surface ships operating in the littorals and other maritime environments. It is compatible with all digital combat management systems, and the radar’s range, accuracy, and beam agility enable the full performance of the Evolved Sea Sparrow Missile (ESSM).

Some Specific Types of Radars

Stealth Radars – Low Probability of Intercept Radars (LPI).     LPI radars transmit weak signals, which are difficult to detect by an enemy intercept receiver. This capability is attained by the use of specific transmitter radiated waveform, antenna, & scan patterns and power management features. The LPI radars are continuous wave, wide bandwidth radars emitting low power signals. This makes LPI radars difficult to detect by passive radar detection systems. Such radar is used in Super Hornet aircraft of the US Navy.

2D, 3D, and 4D Radars.     A 2D radar provides range and azimuth information about the target. 3D radar, in addition provides the elevation information. These are of two types namely; Steered beam radars, which steer a narrow beam through a scan pattern to generate a 3D picture, for e.g. AN/SPY-1 phased array radar on Ticonderoga class of guided missile cruisers; and the Stacked beam radars which transmit and receive at two different angles and deduce the elevation by comparing the received echoes, for e.g. The ARSR-4 radar with a range of over 250 miles.

4D radar is Pulse-Doppler radar capable of 3D functions and determines a target’s radial velocity as well. This type of radar has great applicability in defense, since it can detect targets by removing hostile environmental influences such as electronic interference, birds, reflections due to weather phenomenon etc. In addition, a 4D radar uses much less power and thus helps in stealth function. TRS-4D surveillance radar with Active Electronically Scanned Array (AESA) technology is in use by the German Navy.

Radars – Indian Navy

Indian Navy has various types of indigenous and imported radars. Among the indigenous radars, it has L Band surveillance radar RAWL MK II &III; F Band combined warning and target indication radar RAWS 03 Upgrade, 3D surveillance radar Revathi and navigation radar APARNA etc. Among the imported radars, it has a mix of radars from both the east and the west. Some of the imported radars are; MF-Star 3D phased array radar,MR-760 Fregat M2EM 3-D,MR-90 Orekh fire control radar, Signaal D Band radar,MR-310U Angara air surveillance radar, MR-775 Fregat MAE air surveillance radar, Garpun-Bal fire control radar, MR-352 search radar etc. The P8i Maritime patrol aircraft be operating AN/APY-10 multi function, long-range surveillance radar, capable of operating day and night under all weather conditions. It provides mission support for ISR, anti-surface and anti-submarine warfare. It has both Synthetic Aperture Radar (SAR) and Inverse SAR capability, the Inverse SAR can detect, image and classify surface targets at long ranges.

Some of the indigenous Radars manufactured by BEL, India are-

-L- Band Surveillance Radar, RAWL02 Mk-III, is long-range L band surveillance radar for detection of air and surface targets. It has a roll and pitch stabilized antenna platform, Synthesizer controlled transmitter with TWT amplifier, state of art video extractor track management system based on COTS technology, low noise receiver combined with split pulse and matched dynamic range compression, ECCM capability and a range of 270 Km.

-3D Surveillance Radar, REVATHI,  is a state-of-the-art, S-band, Track-While-Scan (TWS) radar designed to effectively play the role of a medium range surveillance radar mounted on a stabilized platform for detection of air and surface targets. It has ECCM features, integrated IFF Mk XI , stabilization against roll & pitch, and remote transmission of data of tracks & plots over LAN for interface with external systems.

-Active & Passive Radar for Navigation & Attack (APARNA), is designed to detect surface targets, furnish target data to weapon computer for missile firing at these targets in the autonomous mode from the ship. The radar system is provided with two transmitter–receiver channels i.e. the first or main channel and the second or navigational channel. The two channels differ in transmitter peak power, pulse width etc.

Future Trends in Radar Technology

Some of the discernible future trends in radar technology are-

Commercial off the Shelf Components (COTS).            New technologies are being developed rapidly in the commercial sector for low cost manufacturing processes of RF and microwave devices due to very heavy penetration and demand of smart mobiles and broadband in the public arena. These are likely to influence the defense sector and soon such mass produced devices (albeit manufactured to stricter specifications) would be available for defense use. Thus, the trend is a reversal of defense requirement based technology development to mass commercialization driven innovation. A wide range of Gallium Arsenide (GaAs) Monolithic Microwave Integrated Circuits (MMICs), RF power amplifiers, and other RF devices already developed in the commercial sector have direct applications in Radars and other RF devices in defense.

Cognitive Radar.      The term cognitive radar implies a radar that has tremendous transmit/receive adaptivity and diversity along with high performance inbuilt intelligent computing. With the inclusion of environmental dynamic database and knowledge-aided co-processor, it is feasible to add new sources of information, which facilitate additional adaptivity. Currently new generation cognitive radars are at the design stage.

Quantum Radar.      Quantum illumination has been tested up to a distance of 90 miles and it is believed that soon it will be possible to establish much longer ranges utilizing this principle of bouncing photons off a target and comparing them with their unaltered twin. It has been observed that the amount of information so gathered is much more than that available through conventional RF beam reflection from objects. Since energy, quanta behave both as a wave and as a particle; it would be possible to design quantum radar. It is expected that such quantum radar would provide a many fold increase in information parameters and data about the target than has been feasible until now. Quantum radar is currently at the concept stage.


We were told that it was impossible to grapple with submarines, but methods were found … Many things were adopted in war which we were told were technically impossible, but patience, perseverance, and above all the spur of necessity under war conditions, made men’s brains act with greater vigour, and science responded to the demands.

— Winston Churchill, 1935

Sonar systems have benefited enormously with the advances in digital electronics, and signal processing. Many algorithms applicable to radar systems have been adapted in sonar. Use of Synthetic aperture methods in sonar has increased the quality of image and robustness of the system. Use of multiple transducer sensors and sophisticated beam forming techniques adapted from improvements in target detection in radar has yielded similar benefits in sonar.

-Thales Underwater Systems has developed and produced Sonar 2087.
It has been designed to be a variable depth, towed active and passive Sonar system that performs in conjunction with Sonar 2050 bow-mounted active sonar on UK’s Type 23 frigates. Digital technology in signal processing and COTS hardware has been used extensively. It is claimed that S2087 will be suitable for both, littoral environments and Deep Ocean.

-Raytheon has developed the AN/SQQ-90 tactical sonar suite for the US Navy’s DDG 1000-class multi-mission destroyer. The AN/SQQ-90 comprises of the AN/SQS-61 hull-mounted high-frequency sonar, AN/SQS-60 hull-mounted mid-frequency sonar, and the AN/SQR-20 multi-function towed array sonar and handling system.

-Atlas Elektronik will supply Active Towed Array Sonar, ATAS to the Indian Navy, which will equip the Delhi and Talwar class ships. ATAS would be subsequently manufactured in India under cooperation with BEL.

-EdgeTech, has delivered 12 advanced side scan sonar systems (mine warfare) for the Indian Navy.

Indigenous Sonars – Indian Navy

Indigenous Sonars held by the Indian Navy are manufactured by BEL. Two important Sonars manufactured by BEL are the Advanced Active cum Passive Integrated Sonar System (HUMSA NG) and the Integrated Submarine Sonar (USHUS).

-HUMSA-NG is an advanced Active cum Passive integrated sonar system to be fitted on a wide variety of Indian Navy platforms such as the Project 17, Project 15A and Project 28 class ships. HUMSA-NG is an advanced version of the existing HUMSA sonar presently fitted on P16, P15, Ranjit, and Talwar Class of ships. The HUMSA (NG) is designed for enhancing the system performance, reliability, and maintainability. It is capable of detecting, localizing, classifying, and tracking sub-surface targets in both active and passive modes. The system provides simultaneous long-range detection in active and passive modes. The sonar is capable of localization and automatic tracking of up to eight targets in both active and passive modes.

-Integrated Submarine Sonar (USHUS) is used to detect, localize, and classify underwater submerged and surface targets through passive listening, interception of signals and active transmissions of acoustics signals. Its passive sonar has preformed beams in azimuth and in three vertical directions using ASICS. It can auto track six targets and its active sonar has CW and LFM modes of transmission. Its intercept sonar can provide early warning long range target detection, all round coverage in three bands, FFT, and Spectral processing. The underwater communication system has multiple mode acoustic communication in dual frequency to meet NATO and other requirements, voice, telegraph, data, and message modes of operation. Its obstacle avoidance sonar is a high frequency short range sonar with rectangular transducer array and its transmission covers three sectors of 30° each.

ASW Sensors on Naval aircraft

These are of two types namely acoustic and non-acoustic sensors. The non-acoustic sensors include radars, electromagnetic emission sensors, magnetic anomaly detectors (MAD), and infrared receivers. Many Air ASW radars employ multiple radar frequencies, transmission patterns, scan speeds, pulse lengths, and noise reduction techniques. These radars are lightweight, and in addition to ASW operations, they are utilized for surface surveillance, and navigation. Some prominent radar systems used on board Naval ASW aircraft include the AN/APS-137 (S-3B, also P-3Cs), AN/APS-124 (SH-60B), and AN/APS-115 (P-3C). As far as MAD sensors are, concerned naval ASW aircraft use the AN/ASQ-81 MAD system. Its advanced version using digital processor based system the AN/ASQ-208 has already been fitted on a few P-3C aircraft. ASW aircraft EM systems are designed to search mainly for radar signals. EM systems on naval ASW aircraft include the AN/ALQ-142 on the SH-60B Seahawk, the AN/ALR-76 on the S-3B Viking, the AN/ALQ-78 and AN/ALR-66 series on the P-3C Orion. Among the infrared sensors either Infra-Red Detection System (IRDS) or Forward Looking Infra-Red (FLIR) are used. These are used for ASW as well as surface surveillance roles. As an illustration the sensor package for the Sikorsky SH-60 Seahawk includes; second generation integrated AAS-44 Forward-Looking Infrared (FLIR) system for expanded night vision and HELLFIRE targeting capability, new APS-147 multi-mode radar with long/short range search Inverse Synthetic Aperture Radar imaging and periscope detection modes, integrated AQS-22 Airborne Low Frequency Sonar with expanded littoral and deep-water capability including concurrent dipping sonar and sonobuoy processing capability, advanced ALQ-210 Electronic Support Measures (ESM) system for passive detection, location and identification of emitters.

Advances in Submarine Sensors

Advances in submarine sensors include Acoustic Rapid COTS Insertion (ARCI) this takes in to account the applicability of advances in commercial technology to acoustic sensors. With the same sonar arrays, ARCI has demonstrated significant improvement in performance of sonar. ARCI has been designated as the baseline sonar system for the VIRGINIA Class SSN. Another is the development of High Frequency Sonar especially for utilization in the littorals. It would provide detailed information about the undersea environment. Conformal sonar arrays make available an optimally sensor coated submarine with improved stealth. Conformal Acoustic Velocity Sonar (CAVES) would be replacing the Wide Aperture Array technology in the VIRGINIA Class submarines.

Fielding of unmanned underwater vehicles (UUVs) with advanced sensors and weapons, form SSNs would allow SSN to gain access to denied areas like mined waters, very poor acoustic conditions, or extremely shallow water. Missions that the UUVs would be performing include Intelligence, Surveillance & Reconnaissance (ISR), Mine Warfare (MIW), underwater sensing and mapping. The Long-term Mine Reconnaissance System (LMRS) with UUVs would significantly enhance a submarine’s mine hunting capabilities.

Future Trend – Consolidated Antennas and Sensors

A warship requires concurrent functioning of various navigation, combat, and communication systems. Thus, information flow is necessitated between various systems and equipments for e.g. a warship’s navigation and combat systems require information of ship’s course, speed, water depth, and geographical position. The sensors have to feed different systems simultaneously in an integrated manner. This implies in tandem functioning of different systems in a coordinated and unified manner. This is a formidable task since systems are highly complex, diverse electronic units sourced from multiple sources with different standards. The integration unit should be able to comprehend the language of different units, extract relevant information, and feed it to systems in the acceptable format. It should have flexibility to integrate upgrades and new equipment. In addition communication technology developments to provide ever-increasing requirements of multiple bands and bandwidths, foresee a need for large rotating antennas. These pose several problems on board warships like space availability, electromagnetic interference and increase in ships radar signature. The trend is tilting towards development of single unit consolidating antennas and sensors. Thales Netherlands is developing its integrated sensor and communications suite, which will house radio and data-link communication systems, radar and electro-optical subsystems and IFF in a single unit. The US Navy has awarded 18 contracts to develop integration and management technology for radio frequency radar and communications functions. The objective of the advanced multifunction radio frequency concept is the integration of radar, electronic warfare and communications into a common set of apparatus with signal and data processing, signal generation and display hardware.

Thus from the above it can be appreciated that the field of sensors for utilization on a warship is an ever expanding one with new features and capabilities adapted from the commercial world being added practically every hour. There are going to be phenomenal additions to the features and capabilities of various war ship sensors by end of this decade.