Tag Archives: Russia

Civilian Micro Drones, IEDs, and Extremists


Kulshrestha, S. “Civilian Microdrones, IEDs, and Extremists”, IndraStra Global Vol. 04, Issue No: 01 (2018), 0035, http://www.indrastra.com/2018/01/Civilian-Micro-Drones-IEDs-and-Extremists-004-01-2018-0035.html | ISSN 2381-3652


“I look to the skies
and expect artificial passenger pigeons,
blackening the light,
people taking potshots for kicks
imagining one day they will be extinct.”
Carl-John X Veraj

The proliferation of COTS drones
Unmanned aerial vehicles/systems (UAVs/UAS), have been used by military forces in conflict zones to meet various operational requirements for a long time. However, it is only now, due to the availability of Drone technologies from commercial off the shelf (COTS) market sources, that the use of the UAV/Drones [End note 1]. in the civilian arena have found multifarious applications. This availability of Drones is also being gainfully exploited by terrorists/extremists/non-state actors/insurgents & rebels for furthering their nefarious purposes. The Drones have been weaponised innovatively to drop mini bombs, booby trapping, and carrying out kamikaze attacks on the targets of interest. The exploding of a precision crashed drone, in a target area using remote means, at a time of choice is a more recent phenomenon. For example, Skywalker X-8 drone has been spotted by Kurdish forces since 2015. It is understood that a modified Skywalker X-8 (drone borne improvised explosive device or DBIED-End note 2), white in colour, crashed at approximately 1200 hours on 2 October 2016, about 30 to 40 metres from the Peshmerga trench in the Mosul Dam area. Because the drone was light (approx. 2 kg), it was assumed that it was not booby-trapped. It exploded soon thereafter, resulting in the death of two Peshmerga soldiers and wounding of two French paratroopers. The burns they endured were probably due to the detonation of Ammonium Nitrate Fuel Oil explosive (ANFO), and from the melted expanded polyolefin (EPO) material of the UAV body generated by the heat of the explosion {1}. The explosion of the UAV created a small crater (approximately 15-20 cm in diameter) on the ground where the victims were standing. Since then, the Isis has frequently used weaponised Drones to carry out attacks. The type of Drones are commercially available Chinese mini hobby UAVs with ranges upwards of 7km and payloads of up to 40kg {2}.
As per a report by Bard College, UK, the Drone use by extremists has increased exponentially in 2017. Drones are being used in conflict zones like, Syria, Iraq, Yemen, and Philippines. In fact, the ISIS has a well organised system for its Drone operations, it is understood that the US had targeted the leaders of the ISIS Drone program during airstrikes in 2017 {3}. The easy availability of cheap drones in the hands of the extremists has also raised the spectre of the extremists carrying out a spectacular attack using a large number of drones akin to a swarm attack by locusts.
Counter UAS – cUAS [End note 3]
The use of consumer drones by Militant groups; for battlefield reconnaissance, dropping small bombs/IEDs, propaganda footage for recruitment videos, acts of terrorism, flying drones into the flight path of commercial airliners, swarming, or creating fear in the minds of public by other acts etc; has accelerated the developments of Counter UAS technologies in major countries.
Western Countries. Whereas the militaries today are conscious that in case of a drone swarm attack it may not be feasible to destroy or take under control of all the attackers it may be a better idea to have a calibrated and a multi layered approach to the problem. This may include both the kinetic and the electronic warfare options. The threat from small UAVs operated by extremist lone wolves are also being looked at with concern. Some of the efforts at tackling drones by the US include applicability of the British Anti-UAV Defence System (AUDS), which integrates Blighter’s A400 series Ku-band electronic scanning air security radar; Chess Dynamics’ stabilized electro-optic director, infrared and daylight cameras, and target tracking software; and an Enterprise directional radio frequency (RF) inhibitor to detect, track, classify, disrupt, and defeat UAVs up to a range of six miles {4}. The US Army is utilising multiple equipment to deal with the drone threat. For example; US Army has announced a $65 million contract to SRC Inc. New York, to develop, build, and maintain the low slow small unmanned aerial system integrated defeat system; it has also awarded Leonardo DRS, USA a contract of $16 million to develop a counter-unmanned aerial system (C-UAS) capability to protect soldiers from enemy drones; and it has purchased the “Dronebuster,” which is a 5-pound radar gun-like device that soldiers can use to jam weaponized commercial drones.
Drone Defence of UK uses Dedrone DroneTracker to detect and identify unauthorized UAVs, then utilises either the man-portable Dynopis E1000MP to jam the UAV or its Net Gun X1 C-UAV system to capture the aircraft. Operating from either a fixed location or as a mobile unit, DroneTracker uses acoustic, optical, and infrared sensors for real-time detection and identification.
Airbus Defence and Space in Toulouse, France, has developed a cUAV System combining the company’s radars, IR cameras, and direction finders with state-of-the-art data fusion and signals analysis. The system can identify an approaching drone and assess its threat potential at ranges between 5km and 10km, then offer electronic countermeasures like its Smart Responsive Jamming Technology, to minimize the risk of collateral damage.
Russia. The first Russian permanent tactical unit to combat unmanned aircraft has been positioned around Kursk {5}. It is equipped with R-330KMK Zhitel or “Resident” automated radio interference systems. These systems are understood to be able to detect and jam radio signals and interfere with UAV mission systems up to a radius of 30km. “Zhitel” (R-330Zh) system consists of two elements: a wheeled platform with an operator station for the reconnaissance system (0.1-2GHz frequency range) and a trailer with emitters and antennas of the active jamming system. The system’s purpose is to detect, track and jam the Inmarsat and Iridium satellite communications and GSM 1900 cell phones, and also to act against GSM navigation system utilizing the NAVSTAR satellites. “Zhitel” may be operated autonomously or it may, alternatively, be remotely controlled by the R-330KMK station. Its range has been defined as 15 kilometres in case of the ground-system jamming and 200 kilometres, with regards to the airborne platforms.
Israel. At the Singapore Air show in February 2016, Israel Aerospace Industries (IAI) revealed the Drone Guard, its new system for drone detection, identification and flight disruption. ELTA, a subsidiary of IAI, offers 3D radars and Electro-Optical (EO) sensors for detection and identification, as well as dedicated Electronic Attack (EA) jamming systems for disrupting drone flight {6}.
China. China’s Ministry of National Defense released images of the new cUAS on 28 Nov 2017. The cUAS is a container based, road mobile short-range air defence system. As per UAS Vision {7} ; the detection and jamming vehicle is equipped with roof mounted radar, electronic jamming system, and a small electro-optical (EO) ball turret. The other vehicle has a roof mounted laser emitter, a tracker (EO and thermal), and a laser range-finder on a stabilized elevatable and rotatable platform. SZMID High Technology Co. Ltd of China, has offered a new cUAS against illegal intrusion, which claims that it can disrupt the navigation of an unmanned aircraft, forcing it to land or return to base {8}.
Attack by Rebels on Russian Bases in Syria using Drone Swarm
“As for these attacks, they were undoubtedly prepared well. We know when and where these unmanned vehicles were handed over [to the attackers], and how many of them there were. These aerial vehicles were disguised – I would like to stress that – as homemade. But it is obvious that some high-tech equipment was used, {9}”
Vladimir Putin
On 6th Jan 2018 rebels in Syria launched a Swarm attack using drone borne IEDs. The attack involved using more than a dozen of weaponized unmanned aerial vehicles on Russia’s Khmeimim airbase and a Russian navy supply base in Tartus. Khmeimim or Hmeimim Air Base, is a Syrian airbase is located south-east of the city of Latakia in Hmeimim. It is being operated by Russia under a 2015 treaty with Syria. The airfield facilities of Bassel Al-Assad International Airport are utilised by the Khmeimim Air Base. The Russian naval facility at the Syrian port city of Tartus is a leased facility. It is used as a minor repairs and logistic supply base by the Russian Navy.
It is understood that 13 drones were used in the attacks, seven were shot down using Pantsir-S1 system and six were force landed using electronic warfare {10} . The Pantsir-S1 is an anti-missile and anti-aircraft system which has a combined missile/gun for automatically engaging up to 4 targets simultaneously. However, using an anti-aircraft/anti-missile system to bring down ISD modified COTS drones is a very expensive way to neutralise the drone swarms, and militaries are looking for cheaper solutions and measures for the same {11}.
The bombs attached to the captured drones were recovered and had “semi-transparent casings, white plastic fins, and a thick metal hook to attach them underwing.” The bomb’s explosive payload consisted of metal ball bearings epoxied to an explosive core and placed in a mortar bomb-like aerodynamic shell {12} . It is understood that Russians were able to track down the militant launch site after decoding the data recorded on the UAVs and kill the militants responsible for the swarm attack.
The swarm attack by rebels has caught the world by surprise mainly because of the complexities involved in controlling and directing a large number of drones to designated target tens of kilometres away. That the rebels have been able to modify the commercial drones to carry explosives as well as procure rudimentary software to carry out a coordinated attack has shaken the Russians and Americans alike. The possibility of such attacks in near future on non-military targets and urban areas cannot be ruled out.

“The incident itself, while it wasn’t necessarily a spectacular attack by terrorist standards, it certainly portends a very dark future.”
Colin Clarke, RAND
Chinese Drones
A look at China’s ingress into the global drone market is required at this juncture since China is making sophisticated and inexpensive drones that are beginning to dominate the global military and civil markets. The emphasis in this section is on drones which could be easily acquired for exploitation by extremists or rogue regimes.
Military drones. Chinese drones have been purchased by many countries including allies of the US. Kazakhstan and Uzbekistan have purchased Wing Loongs, Turkmenistan, Pakistan, and Myanmar operate CH-3. Nigeria uses CH-3 against Boko Haram. Saudi Arabia and the UAE utilise CH-4s and Wing Loongs against Houthi in Yemen {13} . Iraq has got CH-4s. Jordan and Egypt have also bought Chinese drones. China Aerospace Science and Technology Corporation (CASC), the manufacturers of CH-4 UAV, have already set up production factories in Pakistan, Myanmar and Saudi Arabia {14}.
The bigger combat UAVs come under the Missile Technology Control Regime (MTCR) but China is not a signatory to the same and can therefore proliferate its military drones.
Commercial Drones. China’s DJI is a company that has risen to one of the top manufacturers in the commercial drone market. DJI is famous for its Phantom and Mavic Pro drones. It represents 50 percent of market across all price categories {15} . DJI’s rise in the consumer drone market has been due to its ability to innovate and produce feature rich drones. DJI also reduces its prices periodically forcing other manufacturers, at times, out of the market.
The commercial drones are far cheaper and easily available in the open market, further, there is no current binding or international law against sale of commercial drones and therefore it is very lucrative for the extremists to buy and modify them to suit their objectives.
China’s Swarm technology
“Our swarming drone technology is the top in the world,”
Zhang Dengzhou of CETC, China
For years, the U.S. appeared to have a clear lead when it came to swarming drones. In 2015, the Advanced Robotic Systems Engineering Laboratory (ARSENL) of USA, had claimed a world record by launching a swarm of 50 drones. However, at the 11th China International Aviation and Aerospace Exhibition, China Electronics Technology Group Corporation (CETC) bettered that record with a swarm of 67 drones flying together {16}. The drone used was Skywalker X6s, made by the Skywalker Technology Co. of China. Skywalker drones are popular because they’re cheap, readily-available, and easy to customize. ISIS has adapted Skywalker drones to carry bombs {17}. At the Zhuhai 2016 Air show, the SW-6 was showcased, it is a small drone with folding wings which can be dropped from a mother aircraft. Its stated role is reconnaissance, but it is also a good candidate for China’s drone “swarm” project.
Chinese Micro Killer Drones
There are a number of combat drones or CUAVs developed by China but of interest and likely application in swarm warfare include the CH-802 and CH-803. These drones have been developed by China Aerospace Science and Technology Corporation (CASC).
CH-802. It is a fixed wing micro air vehicle (MAV) with elevated high-wing configuration and V-tail. It is hand launchable. It has a cylindrical fuselage and a two-blade propeller driven by an electric motor. It has a payload capacity of 1 kg and a range of 30 km.
CH-803. It is a fixed-wing UAV with a cylindrical fuselage propelled by two-blade propeller driven by engine mounted in the nose. It is launched by catapult and recovered by a parachute. It has a range of 30 km and a payload capacity of 3.5 kg.
The Future
The drone and drone swarms in the arsenal of the extremists are going to be here for a long time to come. The drones are going to carry more and more harmful weapons like the chemical sprays or the biological viruses. They will be deployed against the state & civil infrastructure as well as personnel. The targeting and guidance is going to be better and better in tandem with the advances in commercial sector. Better speed, obstacle avoidance, longer range, night operability and payload capacities etc. are going to be the norm in near future.
India, as of today, appears to be deficient in effective cUAS/anti-DBIED defensive measures. Major nations across the globe have already strengthened their capabilities in this field while pursuing Unmanned technologies. It is true that as of now such attacks by extremists have more of a propaganda value than a debilitating one. However, considering the capabilities which can be easily transferred by our adversaries to the terrorists under the current trade regimes, and without any fear of international repercussion, the feasibility of a multitude of attacks upon diverse targets launched from across the borders by non-state actors should not be ruled out. India could capitalise on innovative use of artificial intelligence, AI in collating information leading to purchase of drones, their modification, purchase of civil explosives & chemicals, flight pattern of drones etc to augment the EW and kinetic options of cUAS.
It is imperative that India should put in place an AI based robust kinetic and EW counter drone program at the earliest for protection of the military as well as civil areas of interest to the terrorists.


1.Drones and UAVs are considered to be synonymous references.

2. DBIED (Drone-borne improvised explosive device) – is a drone attached to a bomb fabricated in an improvised manner incorporating destructive, lethal, noxious, pyrotechnic, or incendiary chemicals and designed to destroy or incapacitate personnel or vehicles.

3. A UAS is an all-encompassing description that encapsulates the aircraft or UAV, the ground-based controller, and the system of communications connecting the two.


[1] The Use of Weaponised UAVs by the Islamic State: Analysis of DBIED Incident on Peshmerga Forces in the Mosul Dam Area on 2 October 2016. A Report by Sahan Research Ltd London circulated on 29th December 2016. http://sahan-eu.stackstaging.com/wp-content/uploads/2016/12/Sahan-Research-Report-1st-Investigation-of-an-ISIS-Weaponised-Drone-29xii2016.pdf (accessed 18 Jan 2018)

[2] Charles Clover and Emily Feng. Isis use of hobby drones as weapons tests Chinese makers. Financial Times. 11 December 2017. https://www.ft.com/content/82a29f96-c9e7-11e7-ab18-7a9fb7d6163e (accessed 18 Jan 2018)

[3] Drone Year in Review: 2017. Center for the Study of the Drone, Bard College, 3 January 2018. http://dronecenter.bard.edu/drone-year-in-review-2017/ (accessed 18 Jan 2018)

[4] J.R. Wilson. The dawn of counter-drone technologies. Military & Aerospace. 1 November 2016. http://www.militaryaerospace.com/articles/print/volume-27/issue-11/special-report/the-dawn-of-counter-drone-technologies.html (accessed 18 Jan 2018)

[5] Philip Butterworth-Hayes. Russia forms first battlefield tactical counter-UAV unit Kursk. Unmanned Airspace. 01 November 2017. http://www.unmannedairspace.info/counter-uas-systems-and-policies/russia-forms-first-battlefield-tactical-counter-uav-unit-kursk/ (accessed 18 Jan 2018)

[6] IAI Unveils “Drone Guard”: Drone Detection and Disruption Counter UAV Systems. Israel Defense. 18 February 2016. http://www.israeldefense.co.il/en/content/iai-unveils-drone-guard-drone-detection-and-disruption-counter-uav-systems (accessed 18 Jan 2018)

[7] China Test-Fires New Laser-Based C-UAS. UAS Vision. 30 Nov 2017. https://www.uasvision.com/2017/11/30/china-test-fires-new-laser-based-c-uas/#24TYFbwDTJLE1El6.99 (accessed 18 Jan 2018)

[8] Dylan Malyasov. Chinese defence company offers new counter-UAV system. 22, Sep 2017.  http://defence-blog.com/news/chinese-defence-company-offers-new-counter-uav-system.html (accessed 19 Jan 2018)

[9] Putin slams drone attack on Russian base in Syria as provocation. Russian Politics & Diplomacy January 11, 20:01. http://tass.com/politics/984721 (accessed 19 Jan 2018)

[10] Kyle Mizokami. Russian Bases in Syria Attacked with Black Market Drones. Popular Mechanics. 12 Jan 2018. http://www.popularmechanics.com/military/weapons/a15062767/russian-bases-in-syria-attacked-with-black-market-drones/ (accessed 20 Jan 2018)

[11]Marcus Weisgerber.  Air Force Buys Mysterious Israeli Weapon to Kill ISIS Drones. Defence One.23 Feb 2017. http://www.defenseone.com/business/2017/02/air-force-buys-mysterious-israeli-weapon-kill-isis-drones/135620/ (accessed 20 Jan 2018)

[12] 10 Ibid.

[13] Ben Brimelow. Chinese drones may soon swarm the market – and that could be very bad for the US. Business Insider. 17 Nov 2017. https://www.businessinsider.in/Chinese-drones-may-soon-swarm-the-market-and-that-could-be-very-bad-for-the-US/articleshow/61687119.cms  (accessed 19 Jan 2018)

[14] Minnie Chan. Chinese drone factory in Saudi Arabia first in Middle East. South China Morning Post.26 Mar 2017.http://www.scmp.com/news/china/diplomacy-defence/article/2081869/chinese-drone-factory-saudi-arabia-first-middle-east (accessed 19 Jan 2018)

[15] April Glaser. DJI is running away with the drone market. Recode. 14 April 2017. https://webcache.googleusercontent.com/search?q=cache:tLjIuXb8JLUJ:https://www.recode.net/2017/4/14/14690576/drone-market-share-growth-charts-dji-forecast+&cd=2&hl=en&ct=clnk&gl=in (accessed 19 Jan 2018)

[16] David Hambling. If Drone Swarms Are the Future, China May Be Winning. Popular Mechanics. Dec 23, 2016. http://www.popularmechanics.com/military/research/a24494/chinese-drones-swarms/ (accessed 19 Jan 2018)

[17] 16 ibid.

Massive Ordnance Air Blast, MOAB – A Perspective

(Published in CASS Journal, Vol4, No.3. Jul-Sep 2017. ISSN 2347-9191)

On 13th April 2017 at 7:32 p.m. local time[1], U.S. Forces Afghanistan conducted a strike using a GBU-43/B Massive Ordnance Air Blast bomb, MOAB dropped from an U.S. aircraft on an ISIS (Khorasan) tunnel complex in Achin district, Nangarhar province, Afghanistan. Some of the immediate reactions were: –

-Mr Ashraf Ghani, the president of Afghanistan, said that the strike was “designed to support the efforts of the Afghan National Security Forces (ANSF)” and “precautions were taken to avoid civilian casualties”[2],

-Mr Hamid Karzai, Afghanistan’s former president condemned the attacks in a series of tweets saying “This is not the war on terror but the inhuman and most brutal misuse of our country as testing ground for new and dangerous weapons”[3]

In January 2015, the ISIS had announced the establishment of its Khorasan branch, it was also the first time the ISIS had officially spread its wings outside the Arab world. In December 2015, analyst Harleen Gambhir of Institute for the Study of War, ISW had indicated that ISIS is likely to expand in Afghanistan- Pakistan region[4] as ISIS associate Wilayat Khorasan, controlling Nangarhar province, had commenced attacking Kabul and Jalalabad. It was estimated that ISIS influence is likely to increase further due to many factors such as, infighting among Taliban, vacuum due withdrawal of international forces and reduction in competition with al-Qaeda due to support of Khorasan.

Nangarhar Province is located in eastern Afghanistan, on the Afghanistan – Pakistan border. It is bordered by Kunar and Laghman provinces in the north, Pakistan in the east and south, and Kabul and Logar provinces in the west. It provides the easiest passage to Pakistan from Afghanistan. Topographical Features of Nangarhar include Spin Ghar and Safed Mountain Ranges along the southern border; belt of forests along southern mountain ranges and in Dara-I-Nur District in north; Khyber Pass in Mahmund Dara District in east; bare soil, and rocky outcrop throughout centre of the province. Achin, the target of the MOAB on 13 April 2017, is one of the districts in southern Nangarhar, bordering Pakistan.

The ISIS (K) were using a tunnel and cave complex in Tora Bora area which was apparently created by Central Intelligence Agency, CIA for the Mujahideen in 1980 in their fight against the Soviets. Tora Bora has steep heights, mountains, valleys and caves. The Tora Bora CIA complex constitutes of miles of tunnels, bunkers and camps built with the financial support of CIA 35 miles south west of Jalalabad[5]. It is understood that the complex was built by the Saudi Binladen group and the young Osama bin Laden had played a big role in its construction. The complex is said to have its own ventilation and hydroelectric power supply system.  Subsequently Osama bin Laden had hidden in the same tunnel complex before escaping to Pakistan during attack on Tora Bora. The MOAB was dropped on the same mountain ridge in the Achin district of Nangarhar.[6]

Conventional/Incendiary/Fuel Air Explosive/Thermobaric Bombs

It is required to differentiate between conventional, incendiary, Fuel Air Explosive and Thermobaric bombs because MOAB is compared with different types of Bombs like the Russian 15, 650-pound Aviation Thermobaric Bomb of Increased Power (ATBIP) also called the FOAB (father of all bombs), as well as the 30,000-pound GBU-57A/B Massive Ordnance Penetrator (MOP).

Conventional Bombs. A conventional bomb is a metal casing filled with high explosives (HE). Conventional bombs are generally classified according to the ratio of explosive to total weight. They are mainly of three types namely general purpose or GP, penetration and cluster bombs (The Convention on Cluster Munitions (CCM) is an international treaty that has prohibited the use, transfer, and stockpiling of cluster bombs, which scatters submunitions (“bomblets”) over an area). A GP bomb produces a combination of blast and fragmentation effects with weight of its explosive filling approximately equal to half of its total weight. In the fragmentation bomb the explosive filling is up to 20% of its total weight, with fragmentation cases making up the remaining weight. The damage is caused due to fragments travelling at high velocities. The penetration bombs have up to 25/30% of explosive filling and remaining is taken up by the body designed for penetration.  The kinetic energy of the bomb or the shaped charge or a combination of both achieve the penetration of the target.

Incendiary Explosives. Incendiaries cause damage by fire. They are used to burn supplies, equipment, and structures.

Fuel Air Explosives FAE. These disperse an aerosol cloud of fuel ignited by a detonator to affect an explosion. The wave front expands rapidly due to overpressure and flattens objects in the vicinity of the FAE cloud, and also causes heavy damage in the neighbouring area. A FAE bomb contains fuel and two independent explosive charges. After deployment, the first explosive charge is used to burst open the fuel container at a predetermined height and disperse the fuel. The fuel disperses and mixes with atmospheric oxygen and flows around the target area. The second charge is then made to detonate the cloud, which creates a massive blast wave. The blast wave results in extensive damage to the target especially in enclosed spaces.

Thermobaric weapons. Thermobaric weapons have been designed to overcome the short comings of conventional weapons when used against fortified structures/buildings. The blast wave generated by thermobaric weapons are not designed for penetration and it is effective in causing blast damage in a large radius. Fuels are chosen on the basis of the exothermicity of their oxidation, ranging from powdered metals, such as aluminium or magnesium, to organic materials, possibly with a self-contained partial oxidant. During detonation of a high explosive bomb, rapid formation of a blast wave, thermal radiation, break-up of the munition casing, and acceleration of the fragments takes place. In the case of conventional blast/fragmentation warheads, a large part of the energy is consumed by the breaking-up of the shell and acceleration of the fragments. Thermobaric weapons have thin casings and maximum energy is released in a couple of microseconds as a blast/shock wave. In the initial detonation only a small part of energy gets released, the products of detonation thereafter suck oxygen from the air and burn in what is termed as after-burning[7]. This increases the blast pressure wave as well as the fire envelope.

Guidance of Bombs

Air to surface bombs today have either laser guidance kits or Global Positioning System, GPS guidance kits. The laser guided bombs were found to be difficult to deploy in bad weather/visibility conditions or when the targets could not be safely illuminated by the designator, and this led to the preference for GPS guided munitions. Munitions with integrated Inertial Navigation System, INS coupled to a GPS receiver like the Joint Direct Attack Munition (JDAM) of Boeing are all weather deployable. The GPS/INS coupled with a tail control system provide the guidance. The Aircraft provides the initializing position and velocity, the target coordinates are also fed/updated by the aircraft through a data link. With GPS, the bomb gives a circular error probable (CEP) of five meters and without the GPS (signal lost/not available/jammed) for flight times up to 100 seconds the CEP is 30 meters. Thus, the GPS/INS kits have enabled the bombs to have the following advantages[8]:

  • Deployable in all weather conditions.
  • Fire and forget capability, the aircraft can proceed to its next task after launch.
  • Enhanced Launch Acceptance Region or LAR because these kits enable the weapon to adjust the flight trajectory at the time of launch to hit the target.
  • GPS provides an accurate common time code for all systems.
  • Flight trajectory can be programmed to hit the target at desired angle of impact.

As a further improvement Laser JDAM is now operational which has an add on laser kit in addition to the GPS/INS to take care of manoeuvring targets and midcourse alterations. A new wing kit (extended range- ER) can also be added to extend the range of the bomb up to 38 nm.

The MOAB – ‘Mother of All Bombs’

The GBU-43/B (MOAB) is a large, powerful and accurately delivered conventional bomb. It has KMU-593/B GPS-guidance with fins and inertial gyro for pitch and roll control. The KMU-593/B kits have been further upgraded with SAASM (Selective Availability/Anti-Spoofing Module) technology in the GPS receivers. In a further improvement, the KMU-xxx/C kits are additionally fitted with Anti-Jam technology. The MOAB is a satellite guided improved version of the 15000-pound BLU-82 Daisy Cutter bomb. It is 30 feet in length with a diameter of 40.5 inches. The warhead is a BLU 120-B aluminium casing weighing 3000 pounds with an explosive weight of 18,700 pounds. The warhead is designed for blast effect. It was designed to be delivered by a C-130 and originally used the explosive Tritonal, a mixture of 80% Tri nitro toluene, TNT and 20% aluminium powder. It was first tested in March 2003 at Eglin Air Force Base in Florida, when it produced a mushroom cloud that could be seen up to 20 miles away[9]. The current explosive filling is 18,700 pounds of H6. H6 is a type of HBX explosive composition, which is a cast able military explosive mixture composed of 44.0% RDX (Cyclotrimethylene trinitramine), 29.5% TNT and 21.0% powdered aluminium by weight. The MOAB delivers a massive explosive blast (over pressure), with lesser fragmentation effects due to a thin-walled aluminium casing. MOAB is a good choice against caves and earthen tunnels since the pressure waves on entering the complex can severely injure personnel and collapse the structures. The MOAB provides a capability to perform psychological operations, attack large area targets, or hold at-risk threats hidden within tunnels or caves. It is not designed for deep penetration and is an area impact weapon.

The MOAB is cradle launched from C-130 Hercules or MC-130 Talon II aircraft by means of a drogue extraction parachute. [10] Thereafter, the MOAB is guided for approximately 3 nautical miles through a GPS system (with inertial gyros for pitch and roll control), JDAM actuators, and is stabilized by series of fixed wings and grid fins.  The MOAB does not use a retarding parachute, thus permitting the aircraft to fly at higher altitudes, and making it safer for US pilots.

Future Trends in Design and Development of Conventional Bombs

It is understood that nanotechnology is spearheading the development of highly potent explosives, however, not much information is available through open sources, much of it has to be gleaned from research papers and patents (for e.g. Patents like US20150210605 – Structure of energetic materials, US6955732 – Advanced thermobaric explosive compositions and WO2013119191A1 – Composition for a fuel and air explosion).

Essentially, Nano energetic materials (nEMs) perform better than conventional materials because of much larger surface area, which increases speed of reaction and larger energy release in much shorter time. Addition of Super thermites[11] (nano-aluminium based) have shown instantaneous increase in explosive power of existing compositions[12]. Further, use of nano-sized materials in explosives has significantly increased safety and insensitivity by as much as over 30% without affecting reactivity. It is predicted that nEMs would provide the same explosive power at mass up to two orders of magnitude less than the current explosive systems[13].

While Nanosizing of high explosives leads to increasing their explosive power[14] and decreasing their sensitivity to external forces[15], it also decreases its thermal stability. The shelf life of such explosives could therefore stand reduced; however, some patents reveal that this issue has also been resolved technically (e.g. patent US20120227613 Thermal enhanced blast warhead). In India, the work on explosives and propellants is being undertaken at High Energy Materials Laboratory, HEMRL, a Defence Research and Development Organisation, DRDO laboratory, and it is understood that the research in nEMs is progressing satisfactorily.

It can be envisaged that nEMs would replace the conventional explosives in the next decade. This would provide existing conventional weapons with explosive powers higher in magnitude by a factor of two and enhance the safety to external stimulation by at least 30%. In simple terms, a missile warhead having an explosive content of 200 kg of TNT equivalent would have an explosive power of 20,000 kg of TNT equivalent when substituted with nEMs material of same weight of 200 kg! This advancement could displace Tactical nukes from the battlefield.

Nanotechnology is permeating in all fields of design & manufacturing of weapons and ammunition. It is bringing unprecedented precision in weapon systems, robustness in triggering mechanisms and opening new frontiers in propellant and pyrotechnic functioning. In addition to explosive and propellants, Nanomaterials have ushered in innovative improvements in many characteristics of ammunition such as guidance, penetration capacity, embedded sensors for monitoring condition, embedded antennae for guidance and so on.

Russian Answer to MOAB

An Aviation Thermobaric Bomb of Increased Power (ATBIP) was tested by Russia on 11 September 2007. It was said to be the most powerful conventional bomb in the world, with a 7-Ton explosive mixture resulting in a devastating effect equivalent to 44 tons of TNT[16]. It was nicknamed the Father of All Bombs (FOAB). It was hinted that the FOAB contained a liquid fuel, such as ethylene oxide, mixed with energetic nano-aluminium powder, which was dispersed by a high explosive booster. Some reports speculated that the liquid fuel was purified using nano-filters. What caught the imagination of defense experts was the fact that the Russian FOAB had less fuel than the MOAB, but was four times more powerful. It was also probably the first time that the nonprofessional learned of the lethal uses of nanotechnology.

India’s Biggest Conventional Bomb – SPICE

India has acquired the 2000 pound Israeli SPICE (Smart, Precise Impact, Cost-Effective) bomb. It is the biggest bomb in the inventory of the Indian Airforce. Israel’s Rafael Advanced Defence System’s first precision guidance kit for dumb bombs was called the SPICE. SPICE kits claim a CEP (Circular error probable) of three metres. SPICE’s Automatic Target Acquisition capability works by comparing a real-time image received from the dual Charge-Coupled Device (CCD) and infrared seeker to a reference image stored in the weapon’s computer. The SPICE can be carried on Mirage 2000 as well as on a variant of SU-30 MK1 aircraft of the Indian Air Force. The SPICE-2000 is stated to have a stand-off range of 32.3nm (60km).

MOAB the New WMD?

‘In the more distant future, weapons systems based on new principles (beam, geophysical, wave, genetic, psychophysical and other technology) will be developed. All this will, in addition to nuclear weapons, provide entirely new instruments for achieving political and strategic goals. Such hi-tech weapons systems will be comparable in effect to nuclear weapons but will be more “acceptable” in terms of political and military ideology. In this sense, the strategic balance of nuclear forces will play a gradually diminishing role in deterring aggression and chaos.[17]

Vladimir Putin, 2012

There are differing definitions of weapons of mass destruction WMD, therefore it is better to adhere to the one adopted by the United Nations. The definition of WMD was arrived at by the United Nations Convention on Conventional Armament in its first resolution in 1948.The Commission advised the Security Council that “all armaments and armed forces, except atomic weapons and weapons of mass destruction fall within its jurisdiction” and also stated that “weapons of mass destruction should be defined to include atomic explosive weapons, radioactive material weapons, lethal chemical and biological weapons, and any weapons developed in the future which have characteristics comparable in destructive effect to those of the atomic bomb or other weapons mentioned above”.[18] This definition provides the guidelines to distinguish between the conventional weapons and the WMDs.

The determining factors distinguishing the Conventional weapons from the WMD could be the terms Mass Causalities and Mass Destruction. However, mass casualties can also be inflicted by conventional weapons during extended periods of siege or carpet bombings. There is ambiguity in the sense that that event of occurrence of mass casualties could be a single event or a series of consecutive events. The number of casualties could in fact be higher in sustained usage of conventional weapons than in the case of a single use WMD. The other notable point is that there is no quantification of the term ‘Mass’, i.e. how many dead humans would qualify for an event to be termed as Mass casualty. The term mass destruction also suffers from similar dichotomy.  A barrage of conventional weapons can cause a larger scale physical destruction spread across tens of miles as compared to a single WMD in a single event, again, quantification as to what constitutes Mass Destruction has not been defined clearly.

The MOAB has been incorrectly compared to a nuclear bomb. It has less than 1000th[19] of the power of the atomic bomb ‘Little Boy’ dropped on Hiroshima because the MOAB blast was equivalent to 11 tons of TNT whereas the Hiroshima blast was close to 13000 tons equivalent of TNT.  The ‘Fat Man’ atomic bomb dropped on Nagasaki was a 20,000 tons equivalent of TNT. However, the blast radius of MOAB lies in the same one mile radius as the atomic bombs of WWII. Conventional bombs can never achieve the damage potential of the exponential rise of energy that ensues upon a nuclear bombs detonation. The most powerful of nuclear bombs today is the B83 bomb of the United States, it uses a fission process similar to that used in the atomic bombs, the initial energy is then used to ignite a fusion reaction in a secondary core of the hydrogen isotopes deuterium and tritium. The nuclei of the hydrogen atoms fuse together to form helium, and result in a chain reaction leading to a far more powerful explosion. The nuclear fission bomb B83, has a blast equivalent to 1,200,000 tons of TNT compared to 11 tons equivalent of TNT blast by the MOAB. The tactical nuclear weapons range from 10 tons to 100 kilotons. What unambiguously differentiates a conventional weapon from a WMD would be the latent effects of the deployment, which in case of atomic/nuclear weapons last across generations in case of humans and decades in case of remediation of the material. The UN definition of WMD covering atomic, radiological, chemical, biological, or any weapon producing similar effects appears to be sustainable, from this it can be inferred that MOAB/FOAB type of conventional bombs; which lie on the lowest limits of the destructive power of tactical nukes without the attendant latent effects; would not fall in the category of WMD.

An U.S. Air Force Special Operations Command MC-130 Combat Talon transport aircraft dropped the MOAB out of the cargo ramp on 13th April 2017.The bomb detonated at 7.32 pm local time in the Achin district of the eastern province of Nangarhar[20].  The Guardian reported that “a local security official said they had requested a large strike because fighter jets and drones had failed to destroy the tunnel complex”. Also, Ismail Shinwari, the district governor of Achin, said, “the strike was closely coordinated with Afghan soldiers and special forces, and tribal elders had been informed to evacuate civilians.[21] He also told AFP that that at least 92 ISIL fighters were killed in the bombing.[22] It was confirmed later by the Afghan officials that foreign militants, including 13 Indians, were also killed in the bombing.[23] The Indians had joined ISIS and were fighting for caliphate.

The MOAB had proved itself in Global War on Terror.


[1] U.S. Bombs, Destroys Khorasan Group Stronghold in Afghanistan. U.S. Department of Defense. 13 April 2017. https://www.defense.gov/News/Article/Article/1151139/us-bombs-destroys-khorasan-group-stronghold-in-afghanistan/ (Accessed 25 May 2017)

[2] D’Angelo, Bob. “Afghan official: 36 ISIS fighters killed by ‘MOAB’”. ajc.com. 14 April 2017. http://www.ajc.com/news/military/afghan-official-isis-fighters-killed-moab/2eZENK0N1wpZNmp2OJZJaK/ (Accessed 28 May 2017)

[3] “U.S. drops ‘mother of all bombs’ in Afghanistan, marking weapon’s first use”. CBS News. 13 April 2017. http://www.cbsnews.com/news/us-drops-mother-of-all-bombs-in-afghanistan-marking-weapons-first-use/ (Accessed 03 Jun 2017)

[4] Harleen Gambhir, ISIS in Afghanistan: ISW Research. 3 December 2015.

http://iswresearch.blogspot.in/2015/12/isis-in-afghanistan-december-3-2015.html (Accessed 28 May 2017)

[5] Weaver, Mary Anne. “Lost at Tora Bora”. The New York Times. 11 September 2005. http://www.nytimes.com/2005/09/11/magazine/lost-at-tora-bora.html (Accessed 25 May 2017).

[6] Robertson, Nic (2017-14-04) MOAB hit caves used by ISIS, drug smugglers and Osama bin Laden. CNN.

http://edition.cnn.com/2017/04/13/asia/afghanistan-moab-target-robertson/index.html (Accessed 03 Jun 2017)

[7] Dr Anna E Wildegger-Gaissmaier. Aspects of thermobaric weaponry. ADF Health Vol 4 April 2003.

http://www.defence.gov.au/health/infocentre/journals/ADFHJ_apr03/ADFHealth_4_1_03-06.pdf (Accessed 25 May 2017)

[8] Attariwala, Joetey. Dumb Bombs with Graduate Degrees, Armada International. 27April 2017.

https://armadainternational.com/2017/04/dumb-bombs-with-graduate-degrees/ (Accessed 28 May 2017)

[9] Mizokami, Kyle. U.S. Air Force Drops the Largest Conventional Bomb Ever Used in Combat. 13Apr 2017. http://www.popularmechanics.com/military/weapons/news/a26055/us-air-force-drops-moab-isis/ (Accessed 03 Jun 2017)

[10] GBU-43/B “Mother of All Bombs”, http://www.globalsecurity.org/military/systems/munitions/moab.htm (Accessed 05 Jun 2017)

[11] Nano-Thermite or Super-Thermite is a metastable intermolecular composite (MICs) containing an oxidizer and a reducing agent, which are intimately mixed on the nanometer scale. This dramatically increases the reactivity relative to micrometer -sized powder thermite. MICs, including nano-thermitic materials, are a type of reactive materials investigated for military use, as well as for general applications involving propellants, explosives, and pyrotechnics.

[12] Gartner, John. “Military Reloads with Nanotech.” Technology Review, an MIT Enterprise, 21 January 2005. http://www.technologyreview.com/computing/14105/page1/ (Accessed 25 May 2017)

[13] Yang, Guangcheng, Fude Nie, Jinshan Li, Qiuxia Guo, and Zhiqiang Qiao. “Preparation and Characterization of Nano-NTO Explosive.” Journal of Energetic Materials, 25, 2007.

[14] Kaili Zhang, Carole Rossi, and G.A. Ardila Rodriguez. “Development of a Nano-Al/CuO Based Energetic Material on Silicon Substrate.” Applied Physics Letters No. 91, 14 September 2007.

[15] Guangcheng Yang, Fude Nie, Jinshan Li, Qiuxia Guo, and Zhiqiang Qiao. “Preparation and Characterization of Nano-NTO Explosive.” Journal of Energetic Materials, 25, 2007.

[16] Russia tests giant fuel-air bomb. BBC. 12 Sep 2007. http://news.bbc.co.uk/2/hi/europe/6990815.stm / (Accessed 28 May 2017)

[17] Vladimir Putin, “Being Strong: National Security Guarantees for Russia,” Rossiiskaya Gazeta, February 20, 2012, http://archive.premier.gov.ru/eng/events/news/18185// (Accessed 25 May 2017)

[18] Commission on Conventional Armaments (CCA), UN document S/C.3/32/Rev.1, August 1948, as quoted in UN, Office of Public Information, The United Nations and Disarmament, 1945–1965, UN Publication 67.I.8, 28.

[19] Tayag, Yasmin. How Does the “Mother of All Bombs” Compare to a Nuclear Bomb? 13 April 2017. https://www.inverse.com/article/30306-moab-mother-of-all-bombs-compare-nuclear-atomic-bomb-hiroshima-nagasaki (Accessed 03 Jun 2017)

[20] Ackerman, Spencer; Rasmussen, Sune Engel (14 April 2017). “36 Isis militants killed in US ‘mother of all bombs’ attack, Afghan ministry says”. The Guardian. https://www.theguardian.com/world/2017/apr/13/us-military-drops-non-nuclear-bomb-afghanistan-islamic-state (Accessed 28 May 2017)

[21] Rasmussen, Sune Engel. “‘It felt like the heavens were falling’: Afghans reel from MOAB impact”. The Guardian. 14 April 2017.  https://www.theguardian.com/world/2017/apr/14/it-felt-like-the-heavens-were-falling-afghans-reel-from-moabs-impact?CMP=share_btn_tw (Accessed 25 May 2017).

[22] “IS death toll hits 90 from huge US bomb in Afghanistan”. Times Live. 15 April 2017. http://www.timeslive.co.za/world/2017/04/15/IS-death-toll-hits-90-from-huge-US-bomb-in-Afghanistan (Accessed 05 Jun 2017)

[23] “13 suspected Indian IS fighters killed as MOAB hit Afghanistan: Reports”. Hindustan Times. 18 April 2017. http://www.hindustantimes.com/india-news/13-suspected-indian-is-fighters-killed-as-mother-of-all-bombs-hit-afghanistan-reports/story-q0klSwa0SH2CocXkyHMAWK.html (Accessed 03 Jun 2017)