Tag Archives: Military

Jade Necklace: Naval Dimension of Chinese Engagement with Coastal Nations Across the Oceans

(Published IndraStra Global, 17 Dec 2017; for complete interactive experience visit http://www.indrastra.com/2016/12/FEATURED-Jade-Necklace-Naval-Dimension-of-Chinese-Engagement-with-Coastal-Nations-Across-the-Oceans-002-12-2016-0032.html )

“Be extremely subtle even to the point of formlessness. Be extremely mysterious even to the point of soundlessness. Thereby you can be the director of the opponent’s fate.”  

 Sun Tzu, The Art of War

Over a period, Chinese analysts have zeroed upon various countries/islands, which they consider inimical by being under the influence of the United States of America due to trade, military or common political goals. These include; countries/islands in Central Asian Region, Mongolia, India, and Diego Garcia in the outer periphery; Hawaii, Singapore, & Vietnam in the next closer circle; followed by Guam, Australia and New Zealand due to vicinity of second island chain; and Philippines (now tilting in favor of China), ROK & Japan within or around the first island chain. The aim of this article is to provide a naval perspective into the Chinese maritime engagements with nations having seacoasts.

Western Pacific Stand-Off Defenses-Carrier Killer DF-21 D and Guam Killer DF-26

In 2010, The US DoD acknowledged that the Dong-Feng 21D (DF-21D) Chinese anti-ship ballistic missile with a range of 1450 km had attained an initial operating capability. This missile can target a moving aircraft carrier from land-based mobile launchers and has maneuverable re-entry vehicles (MaRVs) with a terminal guidance system. It is understood that this missile is capable of destroying an aircraft carrier with a single hit. The emergence of DF-21D has led the US Navy to rework the ‘carrier support’ warfare approach with respect to China and recommence building of its ballistic missile defense destroyers.

In 2015, China displayed The Dong-Feng 26 (DF-26). It is an intermediate-range ballistic missile produced by the China Aerospace Science and Technology Corporation (CASC). The DF-26 has a range of 3,000–4,000 km, and is said to have nuclear, conventional, and anti-ship strike variants. It is capable of targeting  American military installations at Guam therefore, it has earned the tag of the “Guam Express” or “Guam Killer”. Guam provides the US a strategic base to target the Asian continent with B-52s, F-35s, and F-22s. It also provides basic operational turnaround facilities for carriers and submarines.

Security Concerns-East China Sea

“China’s long-term goal is to build a real ‘blue’ water navy with global reach” – Song Zhongping, Military Commentator

China has built a pier for warships near a military base site close to the disputed Senkaku Island [2] in the East China Sea. A new 70 to 80-meter long pier for warships has been constructed on one of the islands in the Nanji island chain. It lies close to Wenzhou and is nearer to China than the nearest base of Japan. It is understood that a Coast Guard base is being constructed at Wenzhou, which would lend effective support to vessels for monitoring the Senkaku islands.

Security Concerns-South China Sea and Indian Ocean Region

The naval strategy of countries with large coastlines and hostile maritime neighbors invariably factors in submarines and anti-submarine warfare. A modern submarine is a potent multi-role asset that can carry out ISR, special ops, offensive missions, sea denial, and SLOC protection among others. In case it carries strategic weapons, it acts as an important leg of the nuclear triad. Undersea warfare by deploying submarines and/or other unmanned underwater systems is considered crucial in anti-access/area-denial (A2/AD) environments. Considering the offensive capability a submarine bestows upon the nation operating it, there is some merit in also examining the likely basing /sale by China of conventional submarines and its associated high technology in the IOR.

South China Sea (SCS) – In early 2016, Satellite photographs had revealed that China had deployed two batteries of eight HQ-9 surface-to-air missile launchers as well as a radar system, on Woody Island.[3] HQ-9 is a new generation medium-to-long-range, active radar homing, track via missile SAM. Infrastructure for aircraft, runways, and missiles is visible on Subi reef, Fiery Cross reef, and Mischief reef as well. China has continued building a network of artificial islands and turning them into mini military bases.

Submarine Operations: It is understood that complete control of SCS is considered essential by China to provide its expanded submarine fleet unrestricted and unobserved access to the Pacific Ocean from their base in Yulin, Hainan. The underwater channels and straits in SCS facilitate clandestine movement of the submarines through the first and second island chains. It is also understood that China State Shipbuilding is likely to construct the “underwater great wall” a sonar surveillance system with ship and submarine sensors for effective monitoring of foreign vessels in the SCS.

Indian Ocean Region

Djibouti Naval Base – China’s support facility for PLA Navy at Djibouti about 8 km from the US military base is it’s most ambitious and first of its kind foray in having a military base outside of China. The facility would have ship and helicopter maintenance facilities, weapon stores, and support infrastructure for a small contingent of PLAN personnel [5]. This development is of prime importance for India in view of Djibouti’s vicinity to Gwadar as well as the fact that it has been placed under the Western Theatre Command [6] at Chengdu, which would have integral naval assets as well as assets from the PLA Rocket Force  (which controls strategic assets) of China.

Pakistan – In August this year, it was reported that Pakistan is likely to acquire eight attack submarines [8] from China. They are probably export versions of Type 039 and Type 039A/041 (with Air Independent Propulsion). Primary weapons for these submarines are the 533 mm Yu-4 torpedoes, it is also possible that they can fire the Yu-6 wire-guided torpedoes. The torpedo tubes are capable of firing the YJ-8 anti-ship cruise missile, AScM, with a range of 80 km. The submarine can carry a mix of torpedoes, missiles, and mines. The Type 041’s weapon package includes the YU-6 wire-guided torpedoes, mines, and the YJ-8 AScM. It could in the future field the supersonic YJ-18 missile.

Bangladesh –  First of the two Chinese submarines [9] was delivered to Bangladesh on 14 November 2016. The Type 035G diesel-electric submarines, carry torpedoes and mines and are capable of attacking enemy ships and submarines.

Thailand – The Royal Thai Navy is likely to finalize [10] the purchase of three Chinese submarines after dithering over it for some time.

Malaysia – The Royal Malaysian Navy, RMN is planning to buy up to ten littoral mission ships [11] (patrol craft) from China. It is also likely that Malaysia may consider Chinese submarines as a replacement for its HDW submarines in future. It is expanding the RMN Kota Kinabalu submarine base with workshops and air defense systems [12].

Berthing Facilities for PLA Navy in IOR

Myanmar– Construction of two deep-water ports at Kyaukphyu by a consortium headed by CITIC group of China [13] would provide China access to the Bay of Bengal and hence to the IOR. The government has earmarked 1708 hectares for the Kyaukphyu SEZ, with two deep-sea ports, industrial zone, and a housing project.

Sri Lanka – Sri Lanka is trying to breathe life into the Hambantota port and infrastructure project by handing over controlling interests to a Chinese consortium [14].

Maldives – There are indications that Maldives may let the China build a seaport at Gaadhoo Island [15 in the southern atoll. The location of the island is significant as it sits at the entrance to the one-and-a-half degree SLOC channel.

Pakistan – Gwadar port was inaugurated in November 2016 [16] with 250 containers carrying Chinese goods shipped on Chinese ships to the Middle East and African countries.

Tanzanian and Kenyan Ports – Bagamoyo port of Tanzania will be operated by China Merchant Holdings. Lamu port in Kenya is being developed by the China Communications Construction Company [17], and China Roads and Bridges Company is going to construct a modern port in Kisumu [18], Kenya (Lake Victoria).

Access to IOR of Chinese Mechanized Forces

Maj. Gen Bakshi, a strategic analyst has brought out the following two important facets of CPEC in his recent article [19].

The alignment of the CPEC corridor includes two major loops that come close to the Indian borders in Punjab and Rajasthan where major tank battles had been fought during the 1965 and 1971 Indo-Pak wars. These loops in the CPEC grant a military bias to the otherwise proclaimed trade route.

The Chinese army in its thrust on rapid modernization has mechanized its formations to wheel/track based formations that make them very agile. It also allows them to bring their tremendous firepower to Indo-Pak borders through CPEC in the case of any conflict.

Needless to assert that the same firepower can be transshipped rapidly to Gulf, Europe and African coast if required.

Security Concerns-Elsewhere

“The supreme art of war is to subdue the enemy without fighting.” – Sun Tzu, The Art of War

The following table accessed from SIPRI highlights the types of weapon systems exported by China during 2014 and 2015.

TIV of arms exports from China (Weapon Systems)-2014-2015
Generated: 10 December 2016
Figures are SIPRI Trend Indicator Values (TIVs) expressed in US$ m. at constant (1990) prices.
Figures may not add up due to the conventions of rounding.
A ‘0’ indicates that the value of deliveries is less than US$0.5m
For more information, see http://www.sipri.org/databases/armstransfers/background
Source: SIPRI Arms Transfers Database
2014 2015        Total           
Aircraft 215 409 624
Air defence systems 52 64 116
Armoured vehicles 302 384 686
Artillery 94 27 121
Engines 1 1
Missiles 197 206 403
Sensors 30 10 40
Ships 470 865 1335
Total 1360 1966 3326

The following table accessed from SIPRI provides arms export by China during 2014 and 2015.

TIV of arms exports from China to nations-2014-2015
Generated: 10 December 2016
Figures are SIPRI Trend Indicator Values (TIVs) expressed in US$ m at constant (1990) prices.
Figures may not add up due to the conventions of rounding.
A ‘0’ indicates that the value of deliveries is less than US$ 0.5 m
For more information, see http://www.sipri.org/databases/armstransfers/background
Source: SIPRI Arms Transfers Database
   2014 2015                     Total
Algeria 68 254 322
Angola 1 1
Bangladesh 245 474 719
Bolivia 20 20
Cameroon 74 74
Djibouti 8 7 14
Egypt 1 1
Ethiopia 2 2
Ghana 13 13
Indonesia 39 33 72
Iran 9 9 19
Iraq 17 17
Jordan 1 1
Kenya 7 10 16
Myanmar 267 288 554
Nigeria 57 58 115
Pakistan 394 565 959
Peru 13 13
Saudi Arabia 8 8
Seychelles 10 10
South Sudan 12 12
Sudan 32 27 59
Syria 5 5
Tanzania 26 20 46
Thailand 8 8
Trinidad and Tobago 16 16
Venezuela 77 147 223
Zambia 8 8
Total 1360 1966 3326

-It is interesting to note from the above table that 24 countries out of the 28 countries to which China has exported Arms and Ammunition have a maritime border!

-Further, the only four land locked countries that receive arms and ammunition from China have contiguous boundaries with Coastal nations, which in turn are beneficiaries of Chinese arms export. (Bolivia-Peru; Ethiopia-Kenya & Djibouti; South Sudan-Kenya; Zambia-Tanzania)

-it can be seen that the list covers nations in Asia, Gulf, both coasts of Africa, and Latin America. This intern implies ease of berthing facilities for Chinese Naval vessels in ports of these nations.

Gateway to Europe 

“The cooperation at Piraeus port is not just an economic collaboration but has strategic characteristics. Greece, via the Piraeus port, can indeed become China’s gateway into Europe to the benefit of China and Greece,”  Pitsiorlas, Chairman of the Hellenic Republic Asset Development Fund privatization agency.

Greece – The ancient Greek port of Piraeus and one of the largest in Europe, located in the Mediterranean basin has been acquired by COSCO Shipping of China after purchasing 51 percent stake in the port [20]. COSCO Shipping is scheduled to construct a second container terminal for Chinese exports to Europe. The sale another Greek port Thessaloniki; which is being eyed by Chinese companies; is currently put on hold.

Turkey – In September 2015, Chinese state-owned shipping, and logistics company COSCO Pacific, along with China Merchants Holdings International and CIC Capital, had acquired a majority stake in one of the largest container terminals of Turkey, namely Kumport at Ambarli coast of Istanbul [21].

Thus, China has established a critical foothold in Europe by acquiring the Piraeus port as well as the Turkish container terminal in Kumport as part of its strategic One Belt One Road strategic initiative.

Chinese Foray into, Antarctica, and the Arctic (Bering Sea)  

“China’s rapid Antarctic…expansion reflects Beijing’s desire to become a maritime, and polar, great power” – Prof Anne-Marie Brady, Antarctic specialist

China is setting up its first Air Squadron [23] in Antarctica to support its ongoing scientific explorations. China is also a signatory to the Antarctic Treaty that bans the military activity in the region, but there are many dual capability missions, which can aid military research and operations in face of contingencies.

In September 2015, in a first of its kind mission five PLAN ships sailed in the Bering Sea off Alaska [24], interestingly, the PLAN ships were in the area during the visit of President Barack Obama to Alaska. With global warming likely to open the Northern Sea Route sooner than later, China is keen to utilize this opportunity as the route cuts down the distance and passage time to Europe. However, since Canada claims sovereignty over the said waterways, this could pose “the biggest direct challenge to Canadian sovereignty in the Northwest Passage,” [25] according to Professor Rob Huebert, of University of Calgary.

Global Outlook of PLAN – Chinese Navy has undertaken modernization of its Naval fleet to meet its Global Navy focus as part of its geopolitical strategy. As analyzed in a Wikistrat report, “Chinese Navy ships have transited the Red Sea and Suez Canal, the Mediterranean, the Cape of Good Hope, the Bosporus, the Panama Canal, the Strait of Magellan, the Black Sea and the Caspian Sea, and have made port calls all along both the east and west coasts of Africa, Bulgaria, Brazil, Chile, Argentina and Australia. Chinese warships have sailed into American territorial waters near the Aleutian Islands off the coast of Alaska in the Bering Sea” [26].

Conclusion 

“So in war, the way is to avoid what is strong, and strike at what is weak.” -Sun Tzu, The Art of War

A global strategic net has been cast by China by creating fundamental structures for sea trade and commerce. China has been carrying out calibrated development of its maritime capability in mercantile shipping, fishing, undersea exploration & exploitation, and the Navy. It is likely that by 2025 the world would have to come to terms with the global maritime status of China as also the blue water capability of PLAN. The attendant security issues and concerns would follow.

It is no longer a string of pearls in the IOR, it is a studded ‘Jade Necklace Across the Oceans’ that stares at the developed world in defiance today.

Options: 

  • Preclude confrontation given the precarious global economic situation and nuclear deterrence
  • Preclude submission given the dispositions of the existing and emerging power centers
  • Preclude peaceful co-existence, as it is utopian under the existing circumstances where national interests have prevented even an internationally acceptable definition of terrorism
  • Could include rapid building up of a robust coalition to create two distinct power centers, provided the United States is able to synergize its economic might with those of the like-minded nations and tamper the perception that it is a global hegemon.

Time to act is now!

 “Victorious warriors win first and then go to war, while defeated warriors go to war first and then seek to win”  – Sun Tzu, The Art of War

  Publication Details:

Kulshrestha, Sanatan. “FEATURED | Jade Necklace: Naval Dimension of Chinese Engagement with Coastal Nations Across the Oceans” IndraStra Global 02, no. 12 (2016) 0032 | http://www.indrastra.com/2016/12/FEATURED-Jade-Necklace-Naval-Dimension-of-Chinese-Engagement-with-Coastal-Nations-Across-the-Oceans-002-12-2016-0032.html | ISSN 2381-3652|

Endnotes:

[1]http://origin.www.uscc.gov/sites/default/files/Research/Staff%20Report_China’s%20Expanding%20Ability%20to%20Conduct%20Conventional%20Missile%20Strikes%20on%20Guam.pdf

[2] https://sputniknews.com/world/201608201044449726-china-pier-for-warships/  

[3] http://www.news.com.au/world/ongoing-escalations-in-the-south-and-east-china-seas-has-some-analysts-daring-to-wonder-who-would-win-a-war/news-story/20da5034d2b32ff31d35242cee26b656  

[4] http://www.scmp.com/news/china/diplomacy-defence/article/1993754/south-china-sea-air-strips-main-role-defend-hainan   

[5] http://www.wsj.com/articles/china-builds-first-overseas-military-outpost-1471622690   

[6] http://english.chinamil.com.cn/view/2016-02/02/content_7160686.htm   

[7]http://english.chinamil.com.cn/news-channels/china-military-news/2016-01/01/content_6839967.htm   

[8] http://www.ndtv.com/world-news/pak-to-acquire-8-attack-submarines-from-china-for-4-billion-report-1452729   

[9]http://timesofindia.indiatimes.com/world/south-asia/Bangladesh-buys-two-submarines-from-China/articleshow/55415904.cms   

[10] http://thediplomat.com/2016/07/is-thailand-now-serious-about-submarines-from-china/

[11] http://www.reuters.com/article/us-malaysia-china-defence-idUSKCN12S0WA   

[12]http://thediplomat.com/2015/01/malaysia-eyes-submarine-base-expansion-near-south-china-sea/

[13] http://www.wsj.com/articles/china-moves-to-revive-its-sway-in-myanmar-1456697644   

[14] http://www.forbes.com/sites/wadeshepard/2016/10/28/sold-sri-lankas-hambantota-port-and-the-worlds-emptiest-airport-go-to-the-chinese/#1d473d1716d8    

[15]http://timesofindia.indiatimes.com/india/China-may-build-port-in-southern-Maldives/articleshow/51771171.cms 

[16]http://www.newindianexpress.com/world/2016/nov/13/pakistans-strategic-gwadar-port-opens-china-pakistan-economic-corridor-1538139.html   

[17] http://www.bbc.com/news/world-africa-36458946  

[18]http://www.businessdailyafrica.com/Chinese-firm-to-build-Sh14bn-Kisumu-port/1248928-3130106-4m9purz/index.html

   [19] http://www.newindianexpress.com/magazine/voices/2016/nov/26/india-needs-to-seek-alliance-partners-who-are-prepared-to-contain-the-chinese-aggression-1542281–1.html   

[20] https://www.rt.com/business/355523-cosco-stake-greek-port/   

[21]http://www.invest.gov.tr/en-US/infocenter/news/Pages/280915-cosco-pacific-buys-turkish-kumport.aspx   

[22] https://www.aspistrategist.org.au/considering-chinas-strategic-interests-in-antarctica/   

[23] http://thediplomat.com/2016/02/china-to-establish-antarctic-air-squadron-in-2016/

[24] http://www.reuters.com/article/us-usa-china-military-idUSKCN0R22DN20150902   

[25] http://time.com/4302882/china-arctic-shipping-northwest-passage/

[26]http://wikistrat.wpengine.netdna-cdn.com/wp-content/uploads/2016/01/Wikistrat-The-Chinese-Navy.pdf
 

Military Applications of Blockchain Technology

(Published 23 Nov 2016, CLAWS)

“Blockchain protocols are a new class of protocols that are extremely resilient to attack ‒ they gain that resiliency by virtue of being decentralized,”

Professor Emin Gun Sirer, Cornell University

Blockchain technology is fundamentally a mutually trustable storage facility for information of a transaction between multiple users. It is a decentralized and secure way to record, share, store, and redistribute information. There is no central authority controlling the Blockchain, it is run, monitored, and owned by everyone. Anyone can download it free and run it or develop it for new applications/types of transactions, just like an open source code. It enables verification of the transactions at any time without impinging upon privacy of the involved parties. Blockchain technology has the capability to become a disruptive technology during the current decade itself.

“A Blockchain is a magic computer that anyone can upload programs to and leave the programs to self-execute, where the current and all previous states of every pro­gram are always publicly visible, and which carries a very strong crypto-economically secured guarantee that programs running on the chain will continue to execute in exactly the way that the Blockchain protocol specifies.”

 Vitalik Buterin of Ethereum

Two main pillars of Blockchain technology are the ‘distributed consensus’ and ‘anonymity’[i]. It has applications in both the financial and the non-financial fields. In the non-financial sector major companies like IBM, Amazon, Samsung etc. are exploring innovative ways in which to use the Blockchain technology. The near term possibilities include putting ‘proof of existence’ of health data, legal papers, registry certificates (birth, marriage, death), digital trail of assets etc in the Blockchain.

IBM and Samsung have developed a system called ADEPT[ii] (Autonomous Decentralized Peer To Peer Telemetry) that uses design concepts of Bitcoin to construct a distributed network of Internet of Things. The ADEPT utilises three protocols-BitTorrent (file sharing), Ethereum (Smart Contracts) and TeleHash (Peer-To-Peer Messaging).

In the financial sectors, big banks find Blockchain to be a secure and reliable technology and are looking into a host of applications. R3, a financial technology firm is creating a framework for financial applications[iii] using Blockchain technology for a consortium of 15 leading banks. R3’s Corda distributed ledger platform was used by the banks to design and use self-executing transaction agreements. Two prototypes were created using distributed ledger technology for smart contracts. The consortium included Barclays, BBVA, BNP Paribas, Commonwealth Bank of Australia, Danske Bank, ING Bank, Intesa Sanpaolo, Natixis, Nordea, Scotiabank, UBS, UniCredit, US Bank and Wells Fargo.

Military Applications

The NATO Communications and Information Agency is currently evaluating for proposals in areas of application of Blockchain technology to military logistics, procurement and finance, Internet of Things, and other applications of interest to military. The proposals have been submitted as part of the 2016 Innovation Challenge[iv] aimed at accelerating transformational, state-of-the-art technology solutions in support of NATO C4ISR and cyber capability requirements.

US DoD had raised a critical need for a secure messaging and transaction platform accessible via web browser or standalone native application. DARPA has therefore sought proposals vide SBIR 20162[v] to “ Create a secure messaging and transaction platform that separates the message creation, from the transfer (transport) and reception of the message using a decentralized messaging backbone to allow anyone anywhere the ability to send a secure message or conduct other transactions across multiple channels traceable in a decentralized ledger.”

“Whenever weapons are employed … it tends to be a place where data integrity, in general, is incredibly important,” …“So nuclear command and control, satellite command and control, information integrity is very important.”[vi]

Timothy Booher,  Blockchain program manager, DARPA

Critical Weapon Systems. DARPA has awarded a $1.8 mn contract[vii] to Galois for their Blockchain application Guardtime Keyless Signature Infrastructure KSI, to Verify Integrity Monitoring System for its potential to build a form of unhackable code for an enhanced security in critical weapon systems. KSI can detect advanced persistent threats (APTs) which work to remain hidden in networks. Galois works in the area of formal verification, which is a technique that provides mathematical assurances that a system works only as intended in all cases.

Conclusion

Blockchain is a promising technology. However, as is the case with all new technologies, following is relevant:

-users would have to get  used to the fact that under Blockchain technologies electronic transactions are safe, secure and complete.

-since it is in its nascent stage, scaling up presents issues which need to be resolved.

-legal frame work has to be modeled to include Blockchain technology.

-Migration of systems from existing centralized databases and systems could be tedious and expensive.

[i] http://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf

[ii] http://www.coindesk.com/ibm-reveals-proof-concept-blockchain-powered-internet-things/

[iii] http://www.bankingtech.com/551002/r3-blockchain-consortium-gets-smart-on-trade-finance/

[iv] https://www.ncia.nato.int/NewsRoom/Pages/160425_Innovation.aspx

[v] http://www.acq.osd.mil/osbp/sbir/solicitations/sbir20162/index.shtml

[vi] https://cointelegraph.com/news/us-pentagon-may-use-blockchain-tech-for-nuclear-warhead-defense

[vii]https://guardtime.com/blog/galois-and-guardtime-federal-awarded-1-8m-darpa-contract-to-formally-verify-blockchain-based-inte

 

Nanoenergetic Materials (nEMs) in Conventional Ammunition

(Published on 17 May 2016, CLAWS,http://www.claws.in/1571/nanoenergetic-materials-nems-in-conventional-ammunition-sanatan-kulshrestha.html)

Nanoenergetic Materials (nEMs) in Conventional Ammunition

 Nanotechnology “could completely change the face of weaponry,”

Andy Oppenheimer, Jane’s Information Group[1]

On 11 September 2007, Russians tested Father of All Bombs (FOAB), an Aviation Thermo baric Bomb of Increased Power (ATBIP). It was said to be the most powerful conventional bomb in the world, with a 7-Ton explosive mixture resulting in a devastating effect equivalent to 44 tons of TNT[2]. It was hinted that the FOAB contained a liquid fuel, such as ethylene oxide, mixed with energetic nano-aluminium powder, which was dispersed by a high explosive booster. Some reports speculated that the liquid fuel was purified using nano-filters. What caught the imagination of defense experts was the fact that the Russian FOAB had less fuel than the similar US device Mother of All Bombs (MOAB), the GBU-43/B Massive Ordnance Air Blast bomb, but was four times more powerful. It was also probably the first time that the nonprofessional learned of the lethal uses of nanotechnology. Not much information is available through open sources about the developments involving nanotechnology in explosives, much of it has to be gleaned from research papers and patents (for e.g. Patents like US6955732 – Advanced thermo baric explosive compositions and WO2013119191A1 – Composition for a fuel and air explosion).

            Since 2004, ‘Combat Safe Insensitive Munitions’ concept has shifted the focus of safety from a pure materials approach to making marine explosives insensitive to a platform based approach based upon mechanics to increase insensitivity[3]. US Navy has been at the forefront of R&D into new energetic materials since a long time and it is opined that nanotechnology enabled energetic materials would form the backbone of the future defense systems. Timely induction of nano enabled energetic systems with controlled energy release is the focus of current research at institutes like the U.S. Naval Academy, Naval Surface Warfare Center, and the University of Maryland.

            In simple terms, Nanoenergetic materials (nEMs) perform better than conventional materials because of much larger surface area, which increases speed of reaction and larger energy release in much shorter time. Addition of Superthermites[4] (nano-aluminium based) have shown instantaneous increase in explosive power of existing compositions[5]. Further, use of nano-sized materials in explosives has significantly increased safety and insensitivity by as much as over 30% without affecting reactivity. It is predicted that nEMs would provide the same explosive power at mass up to two orders of magnitude less than the current explosive systems[6].

In rocket, propellants nEMs have shown similar capabilities at Los Almos National Laboratories with nitrogen-energized nEMs[7]. In addition, incorporation of more than one burning rate in rocket propellants has given rise to novel design options by creating grains with continuously varying properties along the length as well as across the radius of the grain in Functionally Graded Materials (FGM).

While Nanosizing of high explosives leads to increasing their explosive power[8] and decreasing their sensitivity to external forces[9], it also decreases its thermal stability. The shelf life of such explosives could therefore stand reduced, however, some patents reveal that this issue has also been resolved technically (e.g. patent US20120227613 Thermal enhanced blast warhead). In India the work on explosives and propellants is being undertaken at HEMRL, a DRDO laboratory, and it is understood that the research in nEMs is progressing satisfactorily.

Projections

Nanotechnology is permeating in all fields of design & manufacturing of weapons and ammunition. It is bringing unprecedented precision in weapon systems, robustness in triggering mechanisms and opening new frontiers in propellant and pyrotechnic functioning. In addition to explosive and propellants, Nanomaterials have ushered in innovative improvements in many characteristics of ammunition such as guidance, penetration capacity, embedded sensors for monitoring condition, embedded antennae for guidance and so on.

It can be envisaged that nEMs would replace the conventional explosives in the next decade. This would provide existing conventional weapons with explosive powers higher in magnitude by a factor of two and enhance the safety to external stimulation by at least 30%. In simple terms, a missile warhead having an explosive content of 200 kg of TNT equivalent would have an explosive power of 20,000 kg of TNT equivalent when substituted with nEMs material of same weight of 200 kg!

This advancement could displace Tactical nukes from the battlefield.

What can also be foreseen is the mushrooming of new classes of extremely precise and lethal small/micro weapon systems, which could be scaled down by at least second order of magnitude from the current systems. Thus creating space for the likely paradigm shift from bigger & larger to the smaller & numerous holdings of weapons. This in turn would herald the era of Swarm Warfare.

[1] Gartner, John. “Military Reloads with Nanotech.” Technology Review, an MIT Enterprise, January 21, 2005. http://www.technologyreview.com/computing/14105/page1/

[2] http://news.bbc.co.uk/2/hi/europe/6990815.stm

[3] Insensitive munitions:

Improve the safety and survivability for Armed Forces and civilians in urban areas or near combat zones because they can safely be stored at closer distances. Reduce the vulnerability of platforms and resources against unintended or hostile aggression, violent reactions with blast overpressure and fragmentation damages are under control. Maximize the storage capabilities and improve flexibility logistics: IM can safely be carried by land/sea/air; storage platforms can be closer together and are key to Inter-Operability between the Armed Forces.

[4] Nano-Thermite or Super-Thermite is a metastable intermolecular composite (MICs) containing an oxidizer and a reducing agent, which are intimately mixed on the nanometer scale. This dramatically increases the reactivity relative to micrometer -sized powder thermite. MICs, including nano-thermitic materials, are a type of reactive materials investigated for military use, as well as for general applications involving propellants, explosives, and pyrotechnics.

[5] Gartner, John. “Military Reloads with Nanotech.” Technology Review, an MIT Enterprise, January 21, 2005. http://www.technologyreview.com/computing/14105/page1/

[6] Yang, Guangcheng, Fude Nie, Jinshan Li, Qiuxia Guo, and Zhiqiang Qiao. “Preparation and Characterization of Nano-NTO Explosive.” Journal of Energetic Materials, 25, 2007.

[7] Tappan, B.C., S.F. Son, and D.S. Moore. “Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials.” Shock Compression of Condensed Matter, American Institute of Physics, 2005

[8] Kaili Zhang, Carole Rossi, and G.A. Ardila Rodriguez. “Development of a Nano-Al/CuO Based Energetic Material on Silicon Substrate.” Applied Physics Letters No. 91, 14 September 2007.

[9] Guangcheng Yang, Fude Nie, Jinshan Li, Qiuxia Guo, and Zhiqiang Qiao. “Preparation and Characterization of Nano-NTO Explosive.” Journal of Energetic Materials, 25, 2007.

Neuromorphic Chips – Defence Applications

(Published Claws 30 Apr 2016 )

(http://www.claws.in/1563/neuromorphic-chips-%E2%80%93-defence-applications-sanatan-kulshrestha.html)

..And I had an opportunity to grow from the time where we couldn’t make a single silicon transistor to the time where we put 1.7 billion of them on one chip!

                                                                                 Gordon Moore, Cofounder Intel

Last year Kris Gopalakrishnan pledged $ 50 mn at IISc and IIT Madras on research that seeks to model next level computing based on the functioning of the Brain.[1] Neuromorphic engineering is an emerging interdisciplinary field that involves designing sophisticated devices based on the complex neural circuits of the brain. It uses principles of the nervous system for engineering applications to achieve a better understanding of computations occurring in actual biological circuits and utilize the unique properties of biological circuits to design and implement efficient engineering products. Neuromorphic chips aim to mimic the massive parallel computing power of the brain, circumvent the size limitations of traditional chips, and consume less power. It is also predicted that such chips could adapt in response to stimuli. As a technology demonstrator, P. Merolla et al [2] at IBM have developed a 5.4-billion-transistor chip (TrueNorth) with 4096 neurosynaptic cores interconnected via an intra-chip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. With 5.4 billion transistors, occupying 4.3-sq cm area TrueNorth has ∼428 million bits of on-chip memory. In terms of power, consumption where a typical central processing unit (CPU) consumes 50 to 100 W per sq cm the TrueNorth’s power density is 20 mW per sq cm only. This qualifies it to be a good candidate for ushering in green technology in to computing.[3] However, for purposes of clarity TrueNorth is not a brain, it is inspired by the brain[4] and mimics some functions of the brain to carry out computations.

Market for Neuromorphic Chips

The main factors, which have driven research and development of neuromorphic chips, are tremendous demand for data and data analytics, miniaturization of sensors, ingress of Artificial Intelligence into software of almost all intelligent machines and high cost of further miniaturization of integrated circuits. These factors have spurred the demand and growth of the market for neuromorphic chips, which is expected to grow at a CAGR of 26.31% between 2016 -2022.[5] One of the key areas where such systems would need break-through research would be in design of algorithms since biological systems autonomously process information through deep learning whereas any human designed chip or system would be limited by human designed algorithms. The applications areas currently comprise sensors in military as well as medical fields.

Military Applications

Militaries today are coping up with an exponential increase in the amount of data from a wide variety of sensors.  Unprecedented data collection has severely strained the limited available bandwidth for military use. The data needs to be processed, as close to the sensor as possible before further transmission therefore sequential computational techniques with their large size and power requirements are not very efficient in this regard. NeuroSynaptic chips can carry out this parallel task much more efficiently.

DARPA had initiated a project called Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE), in 2008 and had contracted it to IBM and HRL. It has funding of over $ 100 mn. The aim of SyNAPSE is stated ‘to build an electronic microprocessor system that matches a mammalian brain in function, size, and power consumption. Further, it should recreate 10 billion neurons, 100 trillion synapses, consume one kilowatt, and occupy less than two liters of space’.[6]

The US Army has projected a requirement for a high-performance, low-power bio-inspired parallel processor. This would be integrated in to cognitive communication systems and image processing platforms on unmanned vehicles. The project is being undertaken by Physical Optics Corporation (POC) under their BRAINWARE processor program.

The U.S. Air Force has projected a requirement to develop a new class of advanced, wide field of view (WFOV) imaging sensors that sample the radiation field in multiple modes: spectral, temporal, polarization, and detailed object shape. These multimodal sensors are for deployment on high altitude ISR functions of drones. Scaled down versions are required for use with autonomous micro-air vehicles (MAV) for guidance, navigation, and control. Two types of bio-inspired multimodal sensors, one operating in the visible wavelength regime, and the other operating in the infrared wavelength regime are being developed by The Spectral Imaging Laboratory (SPILAB) in collaboration with the University of Arizona. Both sensors will have a neuromorphic processing capability based upon visual brain areas of insects and crotalid snakes.

Conclusion

It is apparent that neuromorphic chip based computational systems scalable to the capabilities of the human brain are  a clear possibility provided an all-round research and development effort is synergized in hardware, software, architecture, and simulation & understanding of functioning of the brain. The neuromorphic chips as well as quantum computing have ushered in a paradigm shift from the focus on microchips to that of the system as a whole.

In the ultimate goal of mimicking the human brain, it is likely that development of artificial brains of smaller species or specific parts of the human brain may turn out to be more enchanting purely from a commercial point of view. The impetus to the rapid development in neuromorphic systems would be provided by the availability and applications of such systems for large-scale commercial utilization.

[1] http://articles.economictimes.indiatimes.com/2015-01-30/news/58625701_1_brain-research-kris-gopalakrishnan-indian-institute

[2] http://science.sciencemag.org/content/345/6197/668.full

[3] Computational power efficiency for biological systems is 8–9 orders of magnitude higher than the power efficiency wall for digital computation;

[4] http://www.research.ibm.com/articles/brain-chip.shtml

[5]http://www.reportlinker.com/p03302865- summary/Neuromorphic-Chip-Market-by-Application-End-User-Industry-and-Geography-Global-Forecast-Analysis-to.html

[6] http://www.darpa.mil/news-events/2014-08-07

Naval Sensors – a Perspective

 

(Published in SP’s Military Year Book 2015)

We may produce at will, from a sending station. an electrical effect in any particular region of the globe; we may determine the relative position or course of a moving object, such as a vessel at sea, the distance traversed by the same, or its speed. 

— Nikola Tesla, ‘The Problem of Increasing Human Energy’, The Century (Jun 1900)

Sensors ensure the survivability of a warship at sea during peacetime as well as hostilities. Warships at sea are buzzing with inputs from a multitude of sensors. A warship’s basic sensors are those whose outputs are required for practically all operations at sea. These include meteorological sensors, conductivity, temperature & density sensors, communication sensors, ships speed sensors or logs, depth sensors or echo sounders and satellite signal receivers. Apart from these, a ship utilizes Radar and Sonar for its peacetime and combat operations.

Basic Sensors

Meteorological Sensors. A warship requires accurate measurement of wind speed and direction, temperature, pressure, humidity and other local environmental parameters. This is required for various tasks including flight operations, gunnery, rocket and missile firings etc. AGIMET is one of the manufacturers for such systems.

Speed Log.  For measurement of a ship’s transversal and longitudinal speed, single and dual axis speed logs as well as dual axis doppler logs, are available. The speed logs provide ship’s speed, drift speed and angle at all times and in any depth. Raytheon Anshutz manufacture some of the popular ship’s logs.

Conductivity, temperature, and density (CTD) are used extensively for the measurement of temperature and salinity, as also for deriving parameters of density and speed of sound. Teledyne RDI Citadel CTDs fall under this category.

The Expendable Bathythermograph(XBT). It is used by warship to obtain an ocean temperature versus depth profile. It is useful for anti-submarine warfare (ASW) by warships and for anti ship warfare by submarines. Lockheed Martin Sippican has manufactured over 5 million XBT’s since the 1960’s.

Echo Sounder. Data consisting of the immediate depth and a record of soundings are required for navigation. Kongsberg’s EN 250 is one such navigation echo sounder.

Communication Systems. Navies use visual, sound, and electrical means for communications. Telecommunication includes in its ambit transmission, emission, signals, images, sounds, and intelligence information by visual, oral, wire, radio, or other electronic systems. Since these systems, fundamentally sense electromagnetic radiation these also come under the overall ambit of vital sensors for the Navy.

Satellite Signal Receivers for Communication and Navigation. As far as communication systems are concerned, use of satellites is fairly well understood and is common knowledge with deep inroads made by mobile telephony and internet. Methods of navigation have changed throughout history. Satellite navigation using radio signals from satellites for determining position have enhanced the mariner’s ability to complete his voyage safely and expeditiously. Modern integrated systems take inputs from various ship sensors, electronically and automatically chart the position, and provide control signals required to maintain a vessel on a preset course.

Radar

Radar has continued its dominance as a formidable sensor in both the civil and military domains. Post WWII a major improvement was to introduce moving target indicator (MTI) function by using Doppler Effect, where in it was possible to discriminate between a stationary and a moving target. This was followed by the Phased array antenna technology involving dynamic beam forming by combined operation of a number of individual transmitting elements. Strides in digital signal processing led to development of the synthetic aperture radar and consequently to high-resolution imagery.

Frequency Based Classification for the Navy. The frequencies that have been longest in use are in the band 3MHz to 300MHz. Over the horizon radar (OTH), and the early warning radars use the high frequency (HF) band 3MHz to 30MHz (e.g. Russian Woodpecker and US Navy’s AN/TPS-71 Re-locatable OTH radar). The accuracy in this type of radars however is compromised while gaining the range advantage. Very long-range early warning radars use the very high frequency (VHF) band in the range of 30MHz to 300MHz, or the ultra high frequency (UHF) band 300MHz to 1GHz, this band is very useful in detection and tracking of ballistic missiles. Frequency band 1GHz to 2GHz (L band) is used in naval applications of long-range air surveillance. The SMART-L naval radar has a phased array with 24 elements; it has a maximum range of 400km against patrolling aircraft and 65km against an incoming missile. The band 2GHz to 4GHz (S band) is used for Air Borne Warning and Control Systems (AWACS), Boeing E-767 AWAC aircraft uses the AN/APY-2 Pulse Doppler radar, it can determine the velocity of the target as well as distinguish between airborne and maritime targets from ground interference and sea clutter. The band 4GHz to 8GHz (C band) is used for weapon guidance; these are small but highly precise radars. An example is the TRS -3D naval radar for weapon guidance and surveillance, it uses a phased array in 3D for simultaneous detecting and tracking of multiple targets up to a range of 200km. It is designed for detecting sea skimming missiles and attack helicopters. The band 8GHz to 12.5GHz (X band) is used for maritime navigation and airborne radars. The naval Active Phased Array Multifunction Radar (APAR) works in this frequency band, it is capable of automatic detection and tracking of low-level sea skimmers up to 75km and is designed for carrying out terminal guidance requirements of ESSM and SM-2 missiles. The higher frequency bands from 12.5GHz to 40GHz are subject to very high attenuation, therefore are limited to very short ranges, and have applications in civil/police/research requirements. Some prominent radar systems are-

-Enterprise Air Surveillance Radar (EASR) is a development program for replacement for the SPS-48 and SPS-49 air surveillance radars currently on board US Navy’s amphibious ships and aircraft carriers by the 2020. Northrop Grumman has been awarded an 18-month contract for the study of the EASR requirement. The new radar system will utilize technologies from the AN/TPS-80 Ground /Air Task-Oriented Radar (G/ATOR) program.

-Empar (European Multifunction Phased Array Radar) is a G-band, multifunction, active phased array radar being developed by Selex for the Italian Navy and French Navy. Its rotating antenna at 60 rpm provides continuous surveillance, tracking, and weapons fire control. The Empar radar system will be integrated on the Horizon frigates ordered by Italy and France and the Italian Navy’s Conte di Cavour.

-Raytheon’s AN/SPY-5 is an X-band multi-tracking, target-illuminating system for surface combatants that can simultaneously search, detect, and precisely track multiple surface and air threats. The SPY-5 is an open architecture, phased-array radar system, providing an advanced self-defense solution for small and large surface ships operating in the littorals and other maritime environments. It is compatible with all digital combat management systems, and the radar’s range, accuracy, and beam agility enable the full performance of the Evolved Sea Sparrow Missile (ESSM).

Some Specific Types of Radars

Stealth Radars – Low Probability of Intercept Radars (LPI).     LPI radars transmit weak signals, which are difficult to detect by an enemy intercept receiver. This capability is attained by the use of specific transmitter radiated waveform, antenna, & scan patterns and power management features. The LPI radars are continuous wave, wide bandwidth radars emitting low power signals. This makes LPI radars difficult to detect by passive radar detection systems. Such radar is used in Super Hornet aircraft of the US Navy.

2D, 3D, and 4D Radars.     A 2D radar provides range and azimuth information about the target. 3D radar, in addition provides the elevation information. These are of two types namely; Steered beam radars, which steer a narrow beam through a scan pattern to generate a 3D picture, for e.g. AN/SPY-1 phased array radar on Ticonderoga class of guided missile cruisers; and the Stacked beam radars which transmit and receive at two different angles and deduce the elevation by comparing the received echoes, for e.g. The ARSR-4 radar with a range of over 250 miles.

4D radar is Pulse-Doppler radar capable of 3D functions and determines a target’s radial velocity as well. This type of radar has great applicability in defense, since it can detect targets by removing hostile environmental influences such as electronic interference, birds, reflections due to weather phenomenon etc. In addition, a 4D radar uses much less power and thus helps in stealth function. TRS-4D surveillance radar with Active Electronically Scanned Array (AESA) technology is in use by the German Navy.

Radars – Indian Navy

Indian Navy has various types of indigenous and imported radars. Among the indigenous radars, it has L Band surveillance radar RAWL MK II &III; F Band combined warning and target indication radar RAWS 03 Upgrade, 3D surveillance radar Revathi and navigation radar APARNA etc. Among the imported radars, it has a mix of radars from both the east and the west. Some of the imported radars are; MF-Star 3D phased array radar,MR-760 Fregat M2EM 3-D,MR-90 Orekh fire control radar, Signaal D Band radar,MR-310U Angara air surveillance radar, MR-775 Fregat MAE air surveillance radar, Garpun-Bal fire control radar, MR-352 search radar etc. The P8i Maritime patrol aircraft be operating AN/APY-10 multi function, long-range surveillance radar, capable of operating day and night under all weather conditions. It provides mission support for ISR, anti-surface and anti-submarine warfare. It has both Synthetic Aperture Radar (SAR) and Inverse SAR capability, the Inverse SAR can detect, image and classify surface targets at long ranges.

Some of the indigenous Radars manufactured by BEL, India are-

-L- Band Surveillance Radar, RAWL02 Mk-III, is long-range L band surveillance radar for detection of air and surface targets. It has a roll and pitch stabilized antenna platform, Synthesizer controlled transmitter with TWT amplifier, state of art video extractor track management system based on COTS technology, low noise receiver combined with split pulse and matched dynamic range compression, ECCM capability and a range of 270 Km.

-3D Surveillance Radar, REVATHI,  is a state-of-the-art, S-band, Track-While-Scan (TWS) radar designed to effectively play the role of a medium range surveillance radar mounted on a stabilized platform for detection of air and surface targets. It has ECCM features, integrated IFF Mk XI , stabilization against roll & pitch, and remote transmission of data of tracks & plots over LAN for interface with external systems.

-Active & Passive Radar for Navigation & Attack (APARNA), is designed to detect surface targets, furnish target data to weapon computer for missile firing at these targets in the autonomous mode from the ship. The radar system is provided with two transmitter–receiver channels i.e. the first or main channel and the second or navigational channel. The two channels differ in transmitter peak power, pulse width etc.

Future Trends in Radar Technology

Some of the discernible future trends in radar technology are-

Commercial off the Shelf Components (COTS).            New technologies are being developed rapidly in the commercial sector for low cost manufacturing processes of RF and microwave devices due to very heavy penetration and demand of smart mobiles and broadband in the public arena. These are likely to influence the defense sector and soon such mass produced devices (albeit manufactured to stricter specifications) would be available for defense use. Thus, the trend is a reversal of defense requirement based technology development to mass commercialization driven innovation. A wide range of Gallium Arsenide (GaAs) Monolithic Microwave Integrated Circuits (MMICs), RF power amplifiers, and other RF devices already developed in the commercial sector have direct applications in Radars and other RF devices in defense.

Cognitive Radar.      The term cognitive radar implies a radar that has tremendous transmit/receive adaptivity and diversity along with high performance inbuilt intelligent computing. With the inclusion of environmental dynamic database and knowledge-aided co-processor, it is feasible to add new sources of information, which facilitate additional adaptivity. Currently new generation cognitive radars are at the design stage.

Quantum Radar.      Quantum illumination has been tested up to a distance of 90 miles and it is believed that soon it will be possible to establish much longer ranges utilizing this principle of bouncing photons off a target and comparing them with their unaltered twin. It has been observed that the amount of information so gathered is much more than that available through conventional RF beam reflection from objects. Since energy, quanta behave both as a wave and as a particle; it would be possible to design quantum radar. It is expected that such quantum radar would provide a many fold increase in information parameters and data about the target than has been feasible until now. Quantum radar is currently at the concept stage.

Sonar

We were told that it was impossible to grapple with submarines, but methods were found … Many things were adopted in war which we were told were technically impossible, but patience, perseverance, and above all the spur of necessity under war conditions, made men’s brains act with greater vigour, and science responded to the demands.

— Winston Churchill, 1935

Sonar systems have benefited enormously with the advances in digital electronics, and signal processing. Many algorithms applicable to radar systems have been adapted in sonar. Use of Synthetic aperture methods in sonar has increased the quality of image and robustness of the system. Use of multiple transducer sensors and sophisticated beam forming techniques adapted from improvements in target detection in radar has yielded similar benefits in sonar.

-Thales Underwater Systems has developed and produced Sonar 2087.
It has been designed to be a variable depth, towed active and passive Sonar system that performs in conjunction with Sonar 2050 bow-mounted active sonar on UK’s Type 23 frigates. Digital technology in signal processing and COTS hardware has been used extensively. It is claimed that S2087 will be suitable for both, littoral environments and Deep Ocean.

-Raytheon has developed the AN/SQQ-90 tactical sonar suite for the US Navy’s DDG 1000-class multi-mission destroyer. The AN/SQQ-90 comprises of the AN/SQS-61 hull-mounted high-frequency sonar, AN/SQS-60 hull-mounted mid-frequency sonar, and the AN/SQR-20 multi-function towed array sonar and handling system.

-Atlas Elektronik will supply Active Towed Array Sonar, ATAS to the Indian Navy, which will equip the Delhi and Talwar class ships. ATAS would be subsequently manufactured in India under cooperation with BEL.

-EdgeTech, has delivered 12 advanced side scan sonar systems (mine warfare) for the Indian Navy.

Indigenous Sonars – Indian Navy

Indigenous Sonars held by the Indian Navy are manufactured by BEL. Two important Sonars manufactured by BEL are the Advanced Active cum Passive Integrated Sonar System (HUMSA NG) and the Integrated Submarine Sonar (USHUS).

-HUMSA-NG is an advanced Active cum Passive integrated sonar system to be fitted on a wide variety of Indian Navy platforms such as the Project 17, Project 15A and Project 28 class ships. HUMSA-NG is an advanced version of the existing HUMSA sonar presently fitted on P16, P15, Ranjit, and Talwar Class of ships. The HUMSA (NG) is designed for enhancing the system performance, reliability, and maintainability. It is capable of detecting, localizing, classifying, and tracking sub-surface targets in both active and passive modes. The system provides simultaneous long-range detection in active and passive modes. The sonar is capable of localization and automatic tracking of up to eight targets in both active and passive modes.

-Integrated Submarine Sonar (USHUS) is used to detect, localize, and classify underwater submerged and surface targets through passive listening, interception of signals and active transmissions of acoustics signals. Its passive sonar has preformed beams in azimuth and in three vertical directions using ASICS. It can auto track six targets and its active sonar has CW and LFM modes of transmission. Its intercept sonar can provide early warning long range target detection, all round coverage in three bands, FFT, and Spectral processing. The underwater communication system has multiple mode acoustic communication in dual frequency to meet NATO and other requirements, voice, telegraph, data, and message modes of operation. Its obstacle avoidance sonar is a high frequency short range sonar with rectangular transducer array and its transmission covers three sectors of 30° each.

ASW Sensors on Naval aircraft

These are of two types namely acoustic and non-acoustic sensors. The non-acoustic sensors include radars, electromagnetic emission sensors, magnetic anomaly detectors (MAD), and infrared receivers. Many Air ASW radars employ multiple radar frequencies, transmission patterns, scan speeds, pulse lengths, and noise reduction techniques. These radars are lightweight, and in addition to ASW operations, they are utilized for surface surveillance, and navigation. Some prominent radar systems used on board Naval ASW aircraft include the AN/APS-137 (S-3B, also P-3Cs), AN/APS-124 (SH-60B), and AN/APS-115 (P-3C). As far as MAD sensors are, concerned naval ASW aircraft use the AN/ASQ-81 MAD system. Its advanced version using digital processor based system the AN/ASQ-208 has already been fitted on a few P-3C aircraft. ASW aircraft EM systems are designed to search mainly for radar signals. EM systems on naval ASW aircraft include the AN/ALQ-142 on the SH-60B Seahawk, the AN/ALR-76 on the S-3B Viking, the AN/ALQ-78 and AN/ALR-66 series on the P-3C Orion. Among the infrared sensors either Infra-Red Detection System (IRDS) or Forward Looking Infra-Red (FLIR) are used. These are used for ASW as well as surface surveillance roles. As an illustration the sensor package for the Sikorsky SH-60 Seahawk includes; second generation integrated AAS-44 Forward-Looking Infrared (FLIR) system for expanded night vision and HELLFIRE targeting capability, new APS-147 multi-mode radar with long/short range search Inverse Synthetic Aperture Radar imaging and periscope detection modes, integrated AQS-22 Airborne Low Frequency Sonar with expanded littoral and deep-water capability including concurrent dipping sonar and sonobuoy processing capability, advanced ALQ-210 Electronic Support Measures (ESM) system for passive detection, location and identification of emitters.

Advances in Submarine Sensors

Advances in submarine sensors include Acoustic Rapid COTS Insertion (ARCI) this takes in to account the applicability of advances in commercial technology to acoustic sensors. With the same sonar arrays, ARCI has demonstrated significant improvement in performance of sonar. ARCI has been designated as the baseline sonar system for the VIRGINIA Class SSN. Another is the development of High Frequency Sonar especially for utilization in the littorals. It would provide detailed information about the undersea environment. Conformal sonar arrays make available an optimally sensor coated submarine with improved stealth. Conformal Acoustic Velocity Sonar (CAVES) would be replacing the Wide Aperture Array technology in the VIRGINIA Class submarines.

Fielding of unmanned underwater vehicles (UUVs) with advanced sensors and weapons, form SSNs would allow SSN to gain access to denied areas like mined waters, very poor acoustic conditions, or extremely shallow water. Missions that the UUVs would be performing include Intelligence, Surveillance & Reconnaissance (ISR), Mine Warfare (MIW), underwater sensing and mapping. The Long-term Mine Reconnaissance System (LMRS) with UUVs would significantly enhance a submarine’s mine hunting capabilities.

Future Trend – Consolidated Antennas and Sensors

A warship requires concurrent functioning of various navigation, combat, and communication systems. Thus, information flow is necessitated between various systems and equipments for e.g. a warship’s navigation and combat systems require information of ship’s course, speed, water depth, and geographical position. The sensors have to feed different systems simultaneously in an integrated manner. This implies in tandem functioning of different systems in a coordinated and unified manner. This is a formidable task since systems are highly complex, diverse electronic units sourced from multiple sources with different standards. The integration unit should be able to comprehend the language of different units, extract relevant information, and feed it to systems in the acceptable format. It should have flexibility to integrate upgrades and new equipment. In addition communication technology developments to provide ever-increasing requirements of multiple bands and bandwidths, foresee a need for large rotating antennas. These pose several problems on board warships like space availability, electromagnetic interference and increase in ships radar signature. The trend is tilting towards development of single unit consolidating antennas and sensors. Thales Netherlands is developing its integrated sensor and communications suite, which will house radio and data-link communication systems, radar and electro-optical subsystems and IFF in a single unit. The US Navy has awarded 18 contracts to develop integration and management technology for radio frequency radar and communications functions. The objective of the advanced multifunction radio frequency concept is the integration of radar, electronic warfare and communications into a common set of apparatus with signal and data processing, signal generation and display hardware.

Thus from the above it can be appreciated that the field of sensors for utilization on a warship is an ever expanding one with new features and capabilities adapted from the commercial world being added practically every hour. There are going to be phenomenal additions to the features and capabilities of various war ship sensors by end of this decade.