Category Archives: Uncategorized

Book Review-Strategic Vision 2030: Security and Development of Andaman & Nicobar Islands

(Published IndraStra Global 24 Aug 2017)

Air Marshal P K Roy and Commodore Aspi  Cawasji, Strategic Vision 2030: Security and Development of Andaman & Nicobar Islands. Pages 177. Vij Books India Pvt Ltd. Delhi, India. ISBN: 978-93-86457-18-9

The book is a topical release during a tense period in geopolitics of the region. The Doklam standoff between China and India, the South China Sea issues and the belligerent stance of North Korea, all have the potential to spark large scale wars in the Indo Pacific.

I have known the authors for a long period and admire them for their professionalism and their ability to put complex strategic issues in the correct perspective. This book represents their expertise in region of the strategic Andaman & Nicobar island territories of India, which sit astride the vital SLOCs leading to the Malacca Straits.

The book has ten chapters apart from the introduction, which provide an all-encompassing perspective in to the islands. These include not only the natural, industrial and economical potential, but also cover the important strategic significance, security issues and policy recommendations. The rise of China as an economic and military power has made significant difference in the Indian Ocean security environment. Its interest in the IOR emerges from the need to secure its energy supply lines and the route for export of its finished goods passing through the IOR. It has been expanding its sphere of influence in the IOR and security of the SLOCs is its priority at present.

Andaman and Nicobar Islands, ANI also face serious internal and non-traditional security threats that could have grave consequences affecting the security environment of ANI. These include terrorism, illegal migration, drug trafficking, proliferation of Weapons of Mass Destruction (WMD), arms smuggling, poaching of natural resources, etc. The book brings out that these islands can be developed as a self-sustaining economic model and rationale of development of both commercial and military infrastructure as a “dual maritime eco-system” to counter Chinese forays in to the Indian Ocean. Security of ANI and its use as a launching pad in shaping the environment of the region must remain a top priority for India.

The book aptly brings in to focus the fact that the connectivity initiatives taken by China on both, the Eastern and Western flanks of India along with the increasing economic relations with ASEAN countries of IOR adjoining Malacca will create a favourable maritime strategic environment for it. China with its modernized PLAN and the support of these logistic nodes will be capable of deploying its major forces in the Indian Ocean within the next five years.

The book recommends that the infrastructure development in terms of ports, jetties, airfields, docking and ship-repair facilities etc must be dual purpose infrastructure serving the needs of civilian as well as the armed forces. There is a need to create a comprehensive economic engagement plan of these islands with the littoral for them to have a stake in its developmental process. Only then such an engagement would allay suspicions amongst them while India enhances the capabilities of ANC and the consequent increased military activity in the region.

The book is a must read for all those who have a need to study strategic complexities of the Andaman & Nicobar Island territories.

Three Ports Under China’s Gaze

{Published in Indian Military Review Aug 2017 (https://goo.gl/2A1PGt) & IndraStraglobal (http://www.indrastra.com/2017/08/Three-Ports-Under-China-s-Gaze-003-08-2017-0050.html)}

The Baluch and their lands hold the key to prosperity of the land locked Central Asian Region and Afghanistan. The British had divided Baluchistan in to three parts with Goldsmid Line and Durand Line in 1890s. The parts were allocated to Persia, British India and Afghanistan. Iran annexed Western Baluchistan in 1928 and Pakistan annexed British India portion in 1948. The Baluch therefore are aggrieved and demand independence. The Baluchistan of yore (Baluch Lands), had Afghanistan & Iranian provinces of Khorasan and Kerman in the North, the Arabian Sea & Indian Ocean in the South, Punjab & Indus River in the East, and the Strait of Hormuz & the Gulf of Oman in the West. Today it would have had direct access to the Strait of Hormuz and sit atop the busiest of SLOCs carrying 40% of world oil. Baluch lands have large untapped reserves of natural resources like uranium, silver, oil and gas. It provides land, air and sea connectivity to South Asia, Central Asia, and Middle East. It provides a very economical trade link for land locked Afghanistan and Central Asian Region. If united, Baluchistan would have an EEZ of 200 nm along its 1000-mile coastline.

It is estimated that approximately 25 Million Baluchi are in Pakistan, 7 Million in Iran and about 3 Million in Afghanistan. Baluch Insurgency is on the rise in both Pakistan and Iran, though it is much more severe in Pakistan.

Due to the geographical locations of Pakistan and Iran and the fact that both provide the shortest routes to Arabian Sea ports, has led both the countries to progress developing infrastructure and connectivity of their ports with Afghanistan and the Central Asian Region(CAR). Apart from oil and gas, the ports expect to harvest other trade commodities like cotton, which currently are routed through Russia to Middle East, East Asia and South Asia.

Just over 100 km apart, Gwadar the Pakistani port and Chabahar the Iranian port are competitors for accessing the CAR markets. Both Iran and Pakistan are wooing Afghanistan by giving trade and fees incentives to favour their respective ports. Pakistan however fears that “Chabahar port would inflict a huge financial setback for Pakistan”[I].  This is as per a report by the Pakistan’s embassy in Dushanbe, to the Foreign Office in 2003.

Both port cities, Gwadar (Pakistan) and Chabahar (Iran), lie on the erstwhile Baluch land.

Gwadar Port- Pakistan

The Gwadar port development project was commenced in 2002. Millions of dollars poured in to the quiet village of Gwadar from Chinese and Pakistani investors (~$200mn was the Chinese investment for the first phase of the project completed in 2005). Gwadar had a population of about 5000 in 2001, mainly comprising of poor fishermen, once the Chinese assisted deep water port development began, it has crossed a population of 125000. Apart from a network of roads, rail air and infrastructural projects, Pakistan plans include a liquid natural gas (LNG) terminal, an international airport, a cement plant, an oil refinery, and a steel mill. China’s interests at Gwadar are very clear; China is looking for monitoring of its Gulf oil supply route as well as an opening for import/ export trade from its Muslim majority Xinjiang Autonomous Region. The first phase of Gwadar port was completed on schedule by the Chinese in 2005. The running of the port had been leased for 40 years to PSA International of Singapore in 2007 by the Pakistani government. The agreement has however run into problem and in April 2017 it has been leased to be operated by China Overseas Port Holding Company (COPHC) for 40 years. With Gwadar port commencing operations it has given the Chinese an opening in to the Arabian Sea, a strategic depth to Pakistan navy and some cause for worry to India. In 2008 the then Chief of Naval Staff, Indian Navy Admiral Sureesh Mehta said Gwadar could be used by Pakistan to “take control over the world energy jugular.” [II]


As per some estimates China’s maritime industries could contribute up to $1trillion by 2020. Chinese investments in Latin America and Africa are not only in energy sectors but span white goods, automobile parts and textiles amongst others, but the linkage with China is through the sea lanes. This coupled with inbound humungous requirements of oil from gulf and African countries has given rise to the Chinese fears about disruption of its imports and exports through choking of SLOCs due to state, non-state or natural factors. This has led to a rethink in the traditional maritime strategy of China, as per Ni Lexiong, “the ultimate drive to develop sea power is over sea trade”. The increase in sea trade implies its inherent protection by reducing vulnerabilities in the SLOCs of interest to China.

Oil tankers from Gulf transit about 6000 nm and those from the African coast transit about 10,000 nm before they discharge their energy cargo at Chinese ports. Both the tanker routes have to pass through Malacca Straits in addition to problem zones in their respective routes. If tankers can unload at Gwadar, they would have to travel only about 680 nm from the Gulf and about 3000 nm from African coast (Angola).

Pak-China pipe line from Gwadar to Kashghar in Xinjiang, is likely to run parallel to the Karakorum highway and cover a distance of about 1500 miles over tough mountainous terrain. China is seriously contemplating Pak-China energy corridor is evident from the following development projects[iii]:-

-Phase II of Gwadar port and International Airport at Gwadar by China Harbour Engineering Company.

-Petrochemical city (including oil refining capacity of 421,000 bpd) by Great United Petroleum Holdings Company Limited.

-Rail link up to Xinjiang by Dong Fang Electric Supply Corp.

-Upgrading of Karakoram high way.

-Construction of Kazakhstan-China and Turkmenistan – China pipe lines and their eventual augmentation by feed from Gwadar-Kashghar pipe line.

If this project at Gwadar fructifies on expected lines it is estimated that whereas it would account for about 8% of the 2020 Chinese oil import requirements,[iv] the impact on outbound trade from China to Africa and Latin America would be phenomenal.

The China-Pakistan Economic Corridor, CPEC is a 3,000-kilometer corridor from Kashgar in western China to Gwadar in Pakistan on the Arabian sea. It slices through the Himalayas, disputed territories, plains, and deserts to reach the ancient fishing port of Gwadar. Huge Chinese funded infrastructure projects, including road and railway networks as well as power plants, are being built along the way. Originally valued at $46 billion, the corridor is estimated at $62 billion today. The main thrust of these is to strengthen CPEC between the Pakistani port of Gwadar and the Chinese Xinjiang region. This also forms a part of the Chinese one belt one road, OBOR and maritime silk route, MSR programmes. Chinese government and banks like, Industrial and Commercial Bank of China Ltd and China Development Bank will provide funds to Chinese companies investing in the projects. The likely Chinese companies are China Power International Development Ltd, Three Gorges Corp, ICBC Corporation, Zonergy Corporation, and Huaneng Group. The Chinese president has however, linked the investments to the safety and security of Chinese assets and workers since the projects involving railways, pipelines, and roads will cross through the insurgency infested areas of Baluchistan. China would have berthing and transit support facilities for its warships and submarines at Gwadar.

​Chabahar Port-Iran

India has committed ~ $85 million to construct container and multi-purpose terminals at Chabahar[v]. Chabahar enjoys excellent weather and has direct access to Indian Ocean. It lies to south of Baluchistan in the Sistan province. Chabahar has two ports Shahid-Beheshti and Shahid-Kalantary and because of its vicinity to Persian Gulf and Oman Sea it has been a trade centre historically. It had proved its usefulness during Iran-Iraq war, as Iran was able to carry out its trade through this port safely since it lay outside Strait of Hormuz and the Gulf.

A trilateral agreement was signed between Iran, India, and Afghanistan in 2003. India was to build a road, known as Route 606, connecting Delaram, the border city of Afghanistan to Zaranj the Capital of Nimruz province in Afghanistan. Iran was to build a highway from Chabahar up to Delaram. Border Roads Organization of India constructed the Delaram – Zaranj highway and it was completed in 2009. With easing sanctions on Iran, India has once again stepped in with a modest investment to construct container and multipurpose terminals; this would make Chabahar operational in future. It would also provide India with ease of trade with Central Asian Republics, Afghanistan and Iran. On 23 May 2016 during the visit of Mr Narendra Modi to Tehran, 12 agreements, including a deal to develop Iran’s Chabahar port were signed. India agreed to provide $500 million for the project, with a plan to invest an additional $16 billion in the Chabahar free trade zone.

As far as Afghanistan is concerned, its natural resources include, 2.2 billion tons of iron ore, 60 million tons of copper, and 1.4 million tons of rare earth elements such as cerium, neodymium, and lanthanum. It also has lodes of gold, silver, aluminium, zinc, lithium and mercury. The carbonite deposits in Helmand province itself are valued at $89 billion. The US, Russia, China, India, Pakistan and Central Asian Republics have shown interest in these deposits. Afghanistan being a land locked country is currently dependent upon Pakistani ports for its international trade. If Chabahar port starts operating it would provide an alternate, better, and safer port to Afghanistan. The Chabahar port project is very important for Afghanistan since it would enable shipping goods to Middle East and Europe as well as allow inflow of key goods to Afghanistan. Economically it would imply a significant boost to its trade and investment in much needed infrastructure.

Pakistan has also been eyeing the Chabahar port. In March this year, Pakistan and Iran discussed the possibility of better connectivity between Gwadar and Chabahar during talks between Pakistani Prime Minister Nawaz Sharif and Iranian President Rouhani in Islamabad[vi].

The Japanese have evinced keen interest in taking part in the development of Chabahar. Iran’s cooperation with Japan and India, appears to be Iran’s priority for development of Chabahar. China is also keen to take part in infrastructure development at Chabahar.[vii] Subsequent to the visit of Xi Jinping to Iran there has been a talk for development of Jask Port, and industrial parks through funding by EXIM bank of China. Chinese investors are interested establishing a rail connection between Chabahar and Gwadar and/or supplying energy to Chinese contractors in Gwadar through Chabahar.[viii]

Iran, Afghanistan and Tajikistan had inked a trilateral agreement for the Anzob Tunnel project. Tehran provided $10 million grant for Tajikistan to complete the project. The tunnel, which is now operational, is providing safe and uninterrupted road access to Chabahar port from Tajikistan. Iran also extended $21 million credit to Tajikistan for developing its transportation and road sector.

As of April 2017, work is progressing satisfactorily at Chabahar.[ix]

Powerplay (w.r.t ports)

-India’s foray in to Chabahar is seen as a counter to China’s initiative at Gwadar and its linkages with CPEC. Transforming Chabahar into a major shipping port would be a win-win for all, i.e. Iran, Afghanistan and India. It will provide assured energy supplies, open trade for Central Asian Region and permit monitoring of SLOCS. It has opened up option for a sub-sea Oman-Iran-India oil pipeline. Further in case Turkmenistan-Afghanistan-Iran oil pipe line fructifies, Central Asia would be connected to India. This would be a game changer for the region. The Central Asian countries can reduce their dependence upon Russia and export energy to Europe and other Asian countries. Russia could also utilize this route for export of its natural resources and finished products. It would provide a cognizable counter to influence of China in the region. India would keep promoting Chabahar as a strategic port on the Makaran coast as it addresses both the ease of trading as well as India’s security needs in the region.

-To China at Gwadar, Chabahar as and when it is fully developed would pose a significant challenge. It would provide a counter monitoring post to its activities and continue to sit astride the SLOCs threatening its energy security needs. The limited capacities of land pipelines to Xinjiang from Gwadar would still permit sizeable choking of oil flow through SLOCS to Chinese mainland by blockades along the route. Gwadar would be more beneficial to export goods from China to Africa and Middle East. Especially since China exports a large amount of armament to African countries and a land-sea route is far more economical then air freight to distant destinations. The focus of most researchers has been on energy imports by China through Gwadar, however, exports out of Gwadar would be far more profitable for China and provide an opening to a large land locked area of western China.

-The US shares India’s concerns over Gwadar and the long-term threat it could pose to the SLOCs in the Arabian Sea. The US has supported the Chabahar Agreement cautiously for the time being due to thawing of relations with Iran. Increasing awareness in the US of Pakistan’s destabilizing designs in Afghanistan and leaning towards China, as also its support to terror groups on its soil is tilting opinion in favour of India. US would like a greater role for India in the reconstruction of Afghanistan and therefore it realises the importance of land/sea route linkages required by India to assist Afghanistan.

-The development of both ports has provided impetus to the Baluch demand for independence. It has also enhanced the strategic importance of the Baluch land mass for Central Asian Countries, Gulf nations, Europe and African states. It is understood that Baluch would prefer US naval presence at Chabahar and Gwadar in case US supports the case for independence of Baluchistan[x]. Baluch are opposed to militarisation of Gwadar and Chabahar by China and Iran respectively. The Baluch stake their claim to both the ports since historically they are located on their land. India is progressing very cautiously at Chabahar since it supports demand for an independence of Baluchistan annexed by Pakistan in 1948.

The ports of Gwadar and Chabahar lie 1565 miles and 1486 miles NE of Djibouti respectively where China has established its first ever overseas military base.

Strategic Importance of Djibouti

“The western frontier of Djibouti is located in the narrowest part of the Bab-el-Mandeb Strait which connects the Red Sea and the Gulf of Aden. It is of great economic and strategic importance. All the European ships which enter the Red Sea from the Mediterranean through the Suez Canal and head toward East and South Asia, as well as Australia, pass through the 26-kilometer-wide bottle neck,”  

Andrei Kots

Djibouti currently hosts military bases of US, France, Germany, Italy, Japan, China and Saudi Arabia. It is understood that Russia too is going to join them in future. Further, it is noteworthy that Djibouti has declined to host an Iranian military base. The categorization of countries which constitute the Horn of Africa had been defined by Professor Mesfin Wolde-Mariam in 2004. Accordingly, Horn of Africa contains Ethiopia, Eritrea, Djibouti, Somalia, Kenya, Sudan, and South Sudan. Keeping the above in view it can be seen that the Horn of Africa has become the most militarized zone in the region. Dr. Alem Hailu of Howard University, has aptly stated that “The geopolitical importance of the Horn of Africa deriving from the region’s location at the crossroads of trade flows, cultural links and military strategic interests for nations of the world has turned it into a major theatre where governments, movements and political groups large and small have sought to intervene in the internal affairs of the area.”

The strategic significance of the Horn of Africa arises from Red Sea and oil. Red Sea is the shortest waterway between East and the west. The Arabian Peninsula and the Horn of Africa are separated by Bab-el Mandeb strait which is a critical choke point for flow of Gulf Oil. It forms a strategic link between the Indian Ocean and the Mediterranean Sea. Red Sea is connected with Gulf of Aden and Arabian Sea through this strait. Gulf oil exports which are routed through Suez Canal and SUMED (Suez-Mediterranean) pipe line pass through Bab-el-Mandeb. Closure of this strait would lead to severe delays in re-routing the supplies over much larger distances via southern tip of Africa. Eritrea, Djibouti, and Somalia lie on one side of the strait and Yemen on the other side, approximately 3.8 million barrels of crude passes   through this strait daily. The area is piracy and militancy prone and poses a threat to oil shipping.

Djibouti Naval Base– China’s support facility for PLA Navy at Djibouti; about 8 km from the US military base Camp Lemonnier; is its most ambitious and first of its kind foray in having a military base outside of China. The facility would have ship and helicopter maintenance facilities, weapon stores, and support infrastructure for a small contingent of PLAN personnel. This development is of prime importance for India in view of Djibouti’s vicinity to Chinese presence at Gwadar.

The security of the Chinese base at Djibouti has been entrusted to the Western Theatre Command, WTC which has its headquarters at Chengdu in Sichuan province. It has the responsibility to look over India and Arabian Sea. It is the largest theatre command and has complex terrain including desert and high mountains, and long borders with India. In addition to the routine peacetime and wartime roles it has also been assigned a naval component to cater to the overseas base at Djibouti. The Tibet Military Command has been tasked for operations against India in the Arunachal Pradesh area, and training forces for high-altitude mountain warfare[xi] (The WTC headquarters includes a joint operations command centre also located in Chengdu). The WTC can deploy subordinate PLA Army, PLA Air Force and PLA Navy units, and if needed request additional forces from the CMC. China has replaced its Second Artillery Force by a new entity the PLA Rocket Force, which has been placed at par with the other three services. This fourth force would have both conventional and strategic missile components. The PLA Rocket Force would provide integral assets to each of the theatre commands. In addition, in a similar manner the PLA Strategic Support force would comprise the fifth arm of the Chinese military and will provide Intelligence, electronic warfare, cyber, and space operations support. It is understood that strategic missile assets including Naval components have been assigned to WTC for security of Djibouti.

In addition to the military base at Djibouti, Bagamoyo port of Tanzania will be operated by China Merchant Holdings, Lamu port in Kenya is being developed by the China Communications Construction Company, and China Roads and Bridges Company is going to construct a modern port in Kisumu, Kenya (Lake Victoria).

Related to the above is the ever-increasing export of Arms and Ammunition to African countries by China[xii]. Over the years China has established a weapon export relationship with several large and small African states like Egypt, Nigeria, Ethiopia, Zimbabwe, South Africa, the Republic of Congo, Ghana, Equatorial Guinea, Eritrea, Djibouti, Burundi, Ebola, South Sudan, Algeria, Cameroon, and Sierra Leone, among others. It is well known that Armament and ammunition shipments through land and ship routes are far more economical and safer than through Air and it makes sense for Chinese to route the increasing Armament exports through Gwadar to Djibouti over the sea and then beyond utilising as many friendly ports as feasible in Africa and the Gulf.

Dragon Stretches

On 27 June 2017, the Chinese contingent had participated in the 40th National day Parade of Djibouti along with other nations. On 11 July 2017, two PLAN warships, mobile landing platform MLP 868 Donghaidao and the amphibious transport dock Type 071 Jinggangshan set sail from the port of Zhanjiang to Djibouti. The ships were ferrying Chinese soldiers[xiii] for manning the Chinese military base at Djibouti. As per the agreement, the Chinese can position up to 10,000 soldiers at the base[xiv].

In June, this year a window of opportunity opened up for China since Qatar withdrew itself as a mediator between Eritrea and Djibouti land ownership dispute at Dumeira. Both Eritrea and Djibouti had backed Saudi Arabia and its allies in boycotting Qatar and it left no option for Qatar but to recuse itself. A dispute had arisen between Eritrea and Djibouti over Dumeira mountains and islands after the exit of France and Italy from Djibouti and Eritrea respectively. In June 2008, Djibouti claimed that Eritrean forces had entered the territory of Djibouti and had entrenched themselves. Both sides agreed to withdraw to pre2008 positions and have Qatar mediate the dispute after UN intervention in 2009[xv].

On 23 July 2017, the Chinese Ambassador to African Union, Kuang Weilin let it be known that China would consider mediating between Djibouti and Eritrea to resolve the dispute[xvi]and if requested China would also send troops to the border between the two countries.

The Dragon has started stretching from Xinjiang-Gwadar to Djibouti and beyond in to Africa.

 

[I] Neighbours out to fail Gwadar Port, reports revealed in 2003. The News, 30 Jun 2007. https://www.thenews.com.pk/archive/print/651166-neighbours-out-to-fail-gwadar-port,-reports-revealed-in-2003

[II] Ghazali, A.S. India Alarmed as Chinese Built Gwadar Port of Pakistan Becomes Operational.Countercurrents.org, February 8, 2008. http://www.countercurrents.org/ghazali080208.htm (accessed 10 Jul 2017).

[iii] Kulshrestha, S. A Tale of Two Ports: Gwadar versus Chahbahar. World news report and Taza khabar news. 14 May 2015. https://worldnewsreport.in/a-tale-of-two-ports-gwadar-versus-chahbahar/ (accessed 10 Jul 2017). https://taazakhabarnews.com/a-tale-of-two-ports-gwadar-versus-chahbahar/ (accessed 10 Jul 2017).

[iv] Corey S. Johnston, Transnational Pipelines and Naval Expansion: Examining China’s Oil Insecurities in The Indian Ocean. Naval Postgraduate School, Monterey, CA, June 2008. http://calhoun.nps.edu/bitstream/handle/10945/4124/08Jun_Johnston.pdf?sequence=1&isAllowed=y (accessed 10 Jul 2017).

[v] Work at Chabahar Port in Iran progressing fast: Nitin Gadkari. Economic Times, 24 April 2017. http://economictimes.indiatimes.com/news/politics-and-nation/work-at-chabahar-port-in-iran-progressing-fast-nitin-gadkari/printarticle/58343356.cms (accessed 12 Jul 2017).

[vi]Chabahar port will boost India’s connectivity with Afghanistan, Central Asia. Bussiness-Standard,21 May 2016. http://www.business-standard.com/article/news-ians/chabahar-port-will-boost-india-s-connectivity-with-afghanistan-central-asia-116052100485_1.html (accessed 16 Jul 2017).

[vii] India, China, Japan Vying for Investment in Chabahar. Financial Tribune, 21 Jun 2017. https://financialtribune.com/articles/economy-domestic-economy/66869/india-china-japan-vying-for-investment-in-chabahar (accessed 16 Jul 2017).

[viii] ibid.

[ix] xiv ibid.

[x] Husseinbor, M H. Chabahar and Gwadar Agreements and Rivalry among Competitors in Baluchistan Region. Journal for Iranian Studies, Year 1, issue 1- Dec. 2016.  https://arabiangcis.org/english/wp-content/uploads/sites/2/2017/05/Chabahar-and-Gwadar-Agreements-and-Rivalry-among-Competitors-in-Baluchistan-Region.pdf (accessed 19 Jul 2017).

[xi] Jie, K. China raises Tibet Military Command’s power rank. Global Times, 13 May 2016. http://www.globaltimes.cn/content/982843.shtml (accessed 17 Jul 2017).

[xii] Kulshrestha, S. Jade Necklace: Naval Dimension of Chinese Engagement with Coastal Nations Across the Oceans. Indrastra Global,17 Dec 2016.

http://www.indrastra.com/2016/12/FEATURED-Jade-Necklace-Naval-Dimension-of-Chinese-Engagement-with-Coastal-Nations-Across-the-Oceans-002-12-2016-0032.html (accessed 17 Jul 2017).

[xiii] Lendon, B and George, S. China sends troops to Djibouti, establishes first overseas military base. CNN,13 July 2017. http://edition.cnn.com/2017/07/12/asia/china-djibouti-military-base/index.html (accessed 25 July 2017).

[xiv] China to open first overseas military base in Djibouti. Al Jazeera, 12 July 2017. http://www.aljazeera.com/news/2017/07/china-open-overseas-military-base-djibouti-170712135241977.html (accessed 25 Jul 2017).

[xv] The United Nations Security Council Resolution 1862 dated 14 January 2009.

[xvi]Rahman. A, Shaban. A. Eritrea-Djibouti border dispute: China opts to intervene. Africa News, 23 July 2017. http://www.africanews.com/2017/07/23/eritrea-djibouti-border-dispute-china-opts-to-intervene/ (accessed 27 Jul 2017).

Book Review Adam Kahane, Collaborating with the Enemy; How to Work with People You Don’t Agree with or Like or Trust. Pages 130. Berrett-Koehler Publishers, Inc. Oakland, CA. ISBN: 978-1-62656-822-8

(Published at IndrastraGlobal and Amazon)

Book Review

Adam Kahane, Collaborating with the Enemy; How to Work with People You Don’t Agree with or Like or Trust. Pages 130. Berrett-Koehler Publishers, Inc. Oakland, CA. ISBN: 978-1-62656-822-8

I had met Adam during one of his visits to New Delhi. I was impressed by his simple but determined outlook on resolving conflicts. He came across as a sincere advocate of taking All the stake holders on board while resolving a complex conflict irrespective of the time taken in this process. This book is an essence of Adam’s vast personal experience in dealing with conflicts in widely different global regions.

The book is divided in to seven chapters and centres around the fundamental theme of moving ahead positively in an environment which appears to have reached an impasse. His method may enable an alternative future for stake holders even in the absence of major agreements. The stake holders need to commit to only change in prevalent conditions without shedding their stated positions or their own answers to the problem.

His concept of stretch collaboration, as different from normal collaboration, requires that three fundamental shifts be made in one’s working methodology. Firstly, in how one relates with fellow collaborators, one must stretch away from focusing narrowly on the collective goals and harmony of one’s team, and move toward embracing both conflict and connection within and beyond the team. Secondly, in how one advances one’s work, one must stretch away from insisting on clear agreements about the problem, the solution, and the plan, and move toward experimenting systematically with different perspectives and possibilities. And lastly, in how one participates in the current situation—in the role one plays—one must stretch away from trying to change what other people are doing, and move toward entering fully into the action, willing to change him/her self. Stretch collaboration is challenging because all three of these stretches require one to do the opposite of what seems natural.

This book presents a theory and practice of such a stretch collaboration. Chapter 1 explains why collaboration is necessary and why it is intrinsically difficult. Chapter 2 suggests a way to decide when to collaborate and when instead to force, adapt, or exit. Chapter 3 specifies the limitations of conventional collaboration and the narrow conditions under which it is applicable. Chapter 4 outlines stretch collaboration, and chapters 5, 6, and 7 elaborate the three stretches it entails: embracing conflict and connection, experimenting a way forward, and stepping into the game. The conclusion offers a program of exercises to put these ideas into practice.

The author acknowledges that most people find these stretches unfamiliar and uncomfortable because they demand changing ingrained behaviours. The way to learn new behaviours is to practice them over and over. And the way to start practicing is to try out a few simple new actions, pay attention to what works and what doesn’t, adjust and repeat, and build from there. Adam provides a structured program at the end of the book to practice stretch collaboration which could turn out to be a game changer in almost any type of a conflict situation be it at personal, community or national level.

A must read for everybody who wishes to seriously engage in conflict resolution and make this world a better and peaceful place in future.

Military Domain of Cyber warfare

 

(Published in CLAWS Scholar Warrior, Spring 2017, ISSN 2319-7331)

“it would require sustained action for an adversary to take down a network for a period of time which would be really debilitating, but it is possible and something that we need to guard against and be concerned about.”

      Christopher Painter, the first Cyber Coordinator for the US State Department

The extent of cyber reach from dedicated attacks on strategic assets to tactical military operations to criminal activities like ransom to inconveniencing mass populations can be gauged from the following incidents:

-One is the well-known Stuxnet strike, which required tremendous amount of resources, brainpower, and planning time. It falls under the one time gambit with major nations already on guard against similar strikes on their critical strategic facilities.

-In 2009, Conficker worm infected civil and defense establishments of many nations, for example, the UK DOD reported large-scale infection of its major computer systems including ships, submarines, and establishments of Royal Navy. The French Naval computer network ‘Intramar’ was infected, the network had to be quarantined, and air operations suspended. The German Army also reported infection of over a hundred of its computers. Conficker sought out flaws in Windows OS software and propagated by forming a botnet. It became the largest known computer worm infection by afflicting millions of computers in over 190 countries.

-There was a cyber attack in Dec 2015 against energy distribution companies in Ukraine, which led to massive power outages and affected a huge civilian population. This achieved high visibility while using an old Trojan BlackEnergy and other malware to shut down critical systems and wiping out data.

-In February 2016, the Hollywood Presbyterian Medical Center in Los Angeles, California was the victim of a cyber attack that encrypted its electronic data rendering its systems unusable for over a week. The hospital was forced to operate with no access to its computer systems and even had to move some patients to other hospitals. The hospital regained access to its data only after paying a fee of 40 bitcoin (approximately USD 17,000) to the attackers. Since 2014, the CryptoLocker ransom ware alone has allowed cyber criminals to collect over $100 million. The San Francisco Municipal Transportation Agency (SFMTA) was hit with a ransom ware attack on 25 Nov 2016[1], causing fare station terminals to carry the message, “You are Hacked. ALL Data Encrypted.” The hacker sought a ransom of 100 Bitcoin (~$76000). Interestingly, the hacker behind this extortion attempt had been hacked himself revealing details about other victims as well as clues about his identity and location.

Lastly, As per a Forbes news report in November 2016, anyone could rent an army of 100,000 bots for $7500/- on the dark net. Its controllers boast that the Mirai-based botnet could unleash attacks of one Terabit per second or more[2]. Mirai malware enables computer systems running Linux into remotely controlled “bots” that can be used as part of a botnet in large-scale network attacks. It targets online consumer devices such as remote cameras and home routers. The Mirai botnet has been used in some of the largest and most disruptive distributed denial of service (DDoS) attacks since October 2016.

While illustrating the wide ambit under which the cyber attacks take place and the enormous cyber space that is vulnerable, the above examples also highlight the inevitable ease of threat to military and civilian space.

NATO’s CCD CoE (Cooperative Cyber Defence Centre of Excellence) defines Cyberspace as:

“Cyberspace is a time-dependent set of interconnected information systems and the human users that interact with these systems”[3]. The tsunami of networked devices is expanding the cyberspace exponentially along with the requirement of data by individuals, corporations, militaries, and governments. Cyber space is becoming increasingly vulnerable to hostile and unscrupulous interjections; unfortunately, the cyber security aspects are lagging far behind the complexities of the emerging cyberspace. Various factors of cyberspace favor the attackers importantly among them are, its nebulous nature and its dynamic, which leads to ease of switching and concealing identities. These imply that it is extremely difficult to impose punitive measures against them and that such attacks would continue despite the advances in firewalls and other cyber protection systems[4].

The cyber attackers make use of the vulnerabilities like, inadequacies in software, use of secretly tampered hardware, interfaces between software and hardware like reprogrammable RAMs, online connectivity, use of user enabled settings, and access to mal-intentioned personnel who can infect directly or enable remote access. The attacker could target specific computers or carry out a general attack by delivering a payload that can activate at a given time.

To achieve clarity in the military domain of cyber space a few more definitions are necessary. Computer Network Operations (CNO) is a broad term that has both military and civilian application. It is considered one of five core capabilities under Information Operations (IO) Information Warfare by the US Military. In the Dictionary of Military and Associated Terms[5], cyber operations are defined as, “the employment of cyberspace capabilities where the primary purpose is to achieve military objectives or effects in or through cyber space”. As per US Joint Doctrine for Information Operations[6], CNO consists of computer network attack (CNA), computer network defense (CND) and computer network exploitation (CNE). Computer Network Attack (CNA) includes actions taken via computer networks to disrupt, deny, degrade, or destroy the information within computers and computer networks and/or the computers/networks themselves. Computer Network Defense (CND) includes actions taken via computer networks to protect, monitor, analyze, detect and respond to network attacks, intrusions, disruptions or other unauthorized actions that would compromise or cripple defense information systems and networks. Computer Network Exploitation (CNE) includes enabling actions and intelligence collection via computer networks that exploit data gathered from target or enemy information systems or networks. Computer Network Operations, in concert with electronic warfare (EW), is used primarily to disrupt, disable, degrade, or deceive an enemy’s command and control, thereby crippling the enemy’s ability to make effective and timely decisions, while simultaneously protecting and preserving friendly command and control.

Offensive cyber operations, from a military point of view, can be inferred as “actions taken in the cyber environment to deny the actual or potential adversary’s use of or access to information or information systems and affect their decision-making process”[7]. Offensive cyber covers the full spectrum of cyber war commencing with the covert to special operations to regular to overt strategic cyber operations. Deploying of offensive cyber capabilities against the attacker would be difficult for a nation state in view of the lack of evidence and/or identity of the aggressor.

As per US DoD, Offensive cyberspace operations (OCO) are “intended to project power by the application of force in and through cyberspace. OCO will be authorized like offensive operations in the physical domains, via an execute order (EXORD).”[8] These offensive cyber operations however, are to be used discriminatingly. “Military attacks will be directed only at military targets. Only a military target is a lawful object of direct attack.” However, military targets are defined broadly as “those objects whose total or partial destruction, capture, or neutralization offers a direct and concrete military advantage”.[9]

Richard Clarke  the former US National Coordinator for Security, Infrastructure Protection and Counter-terrorism in his book Cyber War: The Next Threat to National Security and What to Do About It[10], defines cyber war as “Cyber war are actions by a nation state to penetrate another nation’s computers or networks for the purposes of causing damage or disruption”. There could be various objectives of the cyber attack on military facilities, these could range from, causing damage to the software of the system and/or the network, lie hidden and inject spurious messages, deny or degrade service, disable encryption systems, alter resident data etc. etc. Cyber attacks have also been divided into two categories by some experts as syntactic attacks that act directly, and semantic attacks that aim to modify data. The syntactic attacks are directed onto IT facilities and semantic attacks target users.

A plausible strategic cyber attack scenario: As India, races towards digitization in its infrastructure and related networks, a strategic cyber attack by Pakistan (proxy China) on India, few years hence could unfold by targeting critical infrastructure in the civil and military domain. It could commence with large scale casualties (possibly in thousands) across India resulting from; disruptions, chaos, and accidents in railways and civil air traffic; collapse communications; it could cripple the road/metro traffic in cities; graduate to failures in essential services like the electric, water supply and hospital services; depending upon the level of interconnectivity lead to collapse of goods supply chain and lead to uncontrollable fires. This scenario to large extent is a distinct possibility even today.

Some salient features of strategic cyber attacks are relevant. The strategic cyber attack presents a powerful option of crippling a conventionally superior nation because of its far cheaper costs, remaining obscure thus averting conventional military strike, ability to inflict hard damage & result in long-term loss to man and material, being technologically superior, near instant launch capability at very large distances, and lastly the fact that they lie beyond the realm of any international legal framework.

However, it is also true that putting cyber weapons in the same league as nuclear weapons would not be correct because cyber weapons cannot replicate the damage potential of a nuclear weapon neither do they have the ability to assure destruction to the levels that grants them status of deterrence. As of now strategic cyber weapons have never been used and have not contributed to victory in a military war. They have yet to shift balance of power on the battlefield and accredit themselves with a certified victory.

 

China Factor: China has undertaken modernization of its cyber capabilities under what it calls Informationization. It is an effort by PLA to attain a fully networked force status. The aim of this process is to maintain information superiority and dominance against the adversary. China is developing a comprehensive computer network exploitation capability to gain strategic intelligence about likely aggressors and their allies as a precursor to winning future conflicts. The overall aim is to synergize computer network operation, electronic warfare, and kinetic strikes to cripple enemy’s information infrastructure. They have adopted “Integrated Network Electronic Warfare” (INEW)[11] that consolidates the offensive mission for both computer network attack (CNA) and EW under PLA General Staff Department’s (GSD) 4th Department (Electronic Countermeasures). The computer network defense (CND) and intelligence gathering responsibilities are assigned to the GSD 3rd Department (Signals Intelligence), and a variety of the PLA’s specialized IW militia units. The PLA is choosing its personnel from the Chinese civilian sector to induct qualified work force with specialized skills from commercial industry and academia. There are circumstantial links between China’s exploitation and theft of key intellectual property from technology-based industries via cyberspace and the PRC’s economic development goals. Dmitri Alperovitch of McAfee had compiled a report Operation Shady RAT[12] in 2011 that highlighted hacking of more than seventy-one corporations and government entities around the world by a single entity using remote access tool (RAT) from 2006 to 2011. Mandiant’s 2013 report APT1: Exposing One of China’s Cyber Espionage Units[13], claims that the PLA’s cyber unit 61398 is most likely behind such exploitation on behalf of the PRC’s military and economic goals.

Conclusion

Taking cognizance of enhanced Chinese cyber warfare capabilities US Department of Defense Strategy for Operating in Cyberspace[14], 2011 had outlined five strategic initiatives:

– Treat cyberspace as an operational domain to organize, train, and equip so that DoD can take full advantage of cyberspace’s potential.

– Employ new defense operating concepts to protect DoD networks and systems.

– Partner with other U.S. government departments and agencies and the private sector to enable a whole-of-government cyber security strategy.

– Build robust relationships with U.S. allies and international partners to strengthen collective cyber security.

– Leverage the nation’s ingenuity through an exceptional cyber workforce and rapid technological innovation.

The US DoD in its cyber strategy for 2015[15] has set five strategic goals for its cyberspace missions:

– Build and maintain ready forces and capabilities to conduct cyberspace operations.

– Defend the DoD information network, secure DoD data, and mitigate risks to DoD missions.

– Be prepared to defend the U.S. homeland and U.S. vital interests from disruptive or destructive cyber attacks of significant consequence.

– Build and maintain viable cyber options and plan to use those options to control conflict escalation and to shape the conflict environment at all stages.

– Build and maintain robust international alliances and partnerships to deter shared threats and increase international security and stability.

In June 2016, a likely cyber attack on Indian government and commercial organizations by Chinese military’s western headquarters was carried out[16]. An alert was issued to the Indian Armed forces that a Chinese Advanced Persistent Threat (APT) group called Suckfly, based in Chengdu region, is targeting Indian organizations, with the defence establishments as is its prime targets. Suckfly is involved in carrying out cyber espionage activities by sending out a malware called Nidiran.

One thing is certain that cyber attacks in all its forms and variations are going to increase exponentially in both the military as well as the civil arena. This interim period of development of strategic cyber weapons accords an opportunity to nation like India to put in place its cyber offense & defense policies and enhance its cyber capabilities to meet eventualities in future.

It is understood that India has started thinking of setting up its own cyber-military industrial complex, and a proposal for automated cyber-defence was submitted in early 2016[17] for a productized platform to be developed jointly by public and private bodies. The proposal is supposedly based upon that of the US DoD Cyber Strategy. It caters to the sharing of cyber-attack indicators across the cyberspace domain in India.

The future cyber warrior in military domain may not confirm to rugged and tough image of soldier of today. He/she may be a person with mediocre health but with a cyber aptitude and capability that could collectively outshine India’s enemies.

[1] https://krebsonsecurity.com/2016/11/san-francisco-rail-system-hacker-hacked/

[2] http://www.forbes.com/sites/leemathews/2016/11/29/worlds-biggest-mirai-botnet-is-being-rented-out-for-ddos-attacks/#6040253c3046

[3] Ottis, R., & Lorents, P. (2010). Cyberspace: Definition and Implications. Tallinn: Cooperative Cyber Defence Centre of Excellence, CCD CoE. https://ccdcoe.org/multimedia/cyberspace-definition-and-implications.html

[4] Porche, I. R. I., Sollinger, J. M., & McKay, S. (2011). A Cyberworm that Knows no Boundaries. Santa Monica: RAND National Defense Research Institute. http://www.rand.org/content/dam/rand/pubs/occasional_papers/2011/RAND_OP342.pdf

[5] JP 1-02 Dictionary of Military and Associated Terms. Washington: US DoD https://fas.org/irp/doddir/dod/jp1_02.pdf).

[6] JP 3-13 Joint Doctrine for Information Operations. Washington: US DoD https://fas.org/irp/doddir/dod/jp3_13.pdf

[7] Bernier, M., & Treurniet, J. (2010). Understanding Cyber Operations in a Canadian Strategic context: More than C4ISR, more than CNO (Conference on Cyber Conflict Proceedings 2010). Tallinn: CCD COE. https://ccdcoe.org/publications/2010proceedings/Benier%20-%20Understanding%20Cyber%20Operations%20in%20a%20Canadian%20Strategic%20Context%20More%20than%20C4ISR,%20More%20than%20CNO.pdf

[8] https://fas.org/blogs/secrecy/2014/10/offensive-cyber/

[9] Cyberspace Operations, JP 3-12 (R)http://fas.org/irp/doddir/dod/jp3_12r.pdf

[10] Clarke, R. A., & Knake, R. (2010). Cyber war: the next threat to national security and what todo about it. New York: Ecco.

[11] US-China Economic and Security Review Commission Report on the Capability of the People’s Republic of China to Conduct Cyber Warfare and Computer Network Exploitation,2009.

http://nsarchive.gwu.edu/NSAEBB/NSAEBB424/docs/Cyber-030.pdf

[12] http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf

[13] https://chinadailymail.com/2013/02/23/mandiant-executive-summary-exposing-one-of-chinas-cyber-espionage-units/

[14] http://csrc.nist.gov/groups/SMA/ispab/documents/DOD-Strategy-for-Operating-in-Cyberspace.pdf

[15] http://www.defense.gov/Portals/1/features/2015/0415_cyber-strategy/Final_2015_DoD_CYBER_STRATEGY_for_web.pdf

[16] http://www.indiandefensenews.in/2016/06/defence-forces-on-alert-after-chinese.html

[17] http://www.huffingtonpost.in/pukhraj-singh/cyber-the-war-india-never-fought-but-lost/

Hybrid warfare-The Naval Dimension

(Published IndraStra Global 01 Jan 2017, http://www.indrastra.com/2017/01/FEATURED-Hybrid-Warfare-Naval-Dimension-003-01-2017-0002.html)

 It is so damn complex. If you ever think you have the solution to this, you’re wrong, and you’re dangerous. You have to keep listening and thinking and being critical and self-critical.

Colonel H.R. McMaster, 2006

In his monograph, Strategic Implications of Hybrid War: A Theory of Victory[1],Lieutenant Colonel Daniel Lasica posits that hybrid force actors attempt to combine internal tactical success and information effects regarding enemy mistakes through the deliberate exploitation of the cognitive and moral domains. In this manner, he describes hybrid warfare simultaneously as a strategy and a tactic because of the blending of conventional, unconventional, criminal, cyber and terrorist means & methods. A hybrid force is thus able to compress the levels of war and thereby accelerate tempo at both the strategic and tactical levels in a method faster than a more conventional actor is able to do. In this theoretical model, the hybrid actor will always gain a perceived strategic advantage over the conventional actor regardless of tactical results. David Sadowski and Jeff Becker, in their article “Beyond the “Hybrid Threat: Asserting the Essential Unity of Warfare,[2]” assert, that the idea of simply seeing hybrid warfare as a combination of threat categories or capabilities fails to appreciate the complexity of the hybrid approach to warfare. Rather, they argue that the essential aspect of hybrid warfare is the underlying unity of cognitive and material approaches in generating effects. Such a unity of cognitive and material domains allows for flexibility in a strategic context in which social “rules” can be redefined in an iterative process to the hybrid’s advantage in terms of legality and military norms.

Majors Mculloh and  Johnson in their monograph ‘Hybrid warfare’[3] have said that hybrid war may be best summarized as a form of warfare in which one of the combatants bases its optimized force structure on the combination of all available resources—both conventional and unconventional—in a unique cultural context to produce specific, synergistic effects against a conventionally-based opponent.

 Don’t ever forget what you’re built to do. We are built to solve military problems with violence.

– A Former Brigade Commander in Op Iraqi Freedom

Therefore, it will not be wrong to say that Hybrid warfare in naval context is a violent conflict utilizing a complex and adaptive organization of regular and irregular forces, means, and behavior across a predominantly maritime domain among others to achieve a synergistic effect, which seeks to exhaust a superior military force.

Alternatively, put simply, it is naval irregular warfare plus cyber war and any other component that emerges in future. CIA has succinctly brought out the contrasting dimensions of Modern versus Irregular warfare in the following table:

Contrasting Dimensions of War[4]
Modern Irregular
Organized Informal
Advanced technology At-hand technology
Logistics-dependent Logistics-independent
National direction Local direction
Coherent doctrine Ad hoc doctrine
Decisive battle Raids and skirmishes
Soldier Warrior
Allies Accomplices
Segregation Integration

Littoral areas and cities in vicinity of the coast could be important sites of future conflict, and both have characteristics that make them more complex than the high seas, and hinterland. Adversaries will increasingly exploit these complex environments to degrade technological advantages of regular forces. Given the close proximity of many cities to the coast as well as abundance of unmanned coastal areas, maritime hybrid is a distinct possibility requiring active involvement of the Navy and the Coast guard. In case of a maritime hybrid war the normal components of the Navy would continue to play an important part in the littorals and in open seas for interdiction of adversary’s irregular assets like floating armories and mercenary flotillas.

Maritime forces are often utilized primarily in support of ground operations, but it is seen that; in environments with a maritime component; maritime operations tend to have a noticeable comparative advantage over land-based operations in terms of mobility, freedom of maneuver, and the ability to impose a smaller or less visible footprint on land. The maritime forces could easily choke supplies through the sea route to reach adversary, protect own maritime trade and fishing in the area, provide logistic and fire support to forces on land from the sea, close escape routes and so on. One important point is that vital external maritime support can be conveniently obtained from friendly nations at sea for ISR, communications and fighting cyber war. The supporting ships could be operating as close as just 12 miles off the coast or hundreds of mile in open seas without violating any regulations.

Now it would be appropriate to look at a few of the salient features of 26 Nov 2008 Mumbai attack as relevant to subject at hand. The Mumbai attack has been analyzed in great depth by various agencies (for e.g. Rand’s ‘Characterizing and Exploring the Implications of Maritime Irregular Warfare’[5] and ‘The Lessons of Mumbai[6]’) and individuals, therefore an attempt is being made here to highlight the main findings of some of these studies. In addition to the meticulous planning, reconnaissance, likely pre-positioning of weapons & ammunition, the major innovation on the part of the terrorists was the real-time exploitation of the international media. Each of the terrorists carried a BlackBerry smart phone to monitor CNN and BBC Internet coverage of the attack in real time. They then immediately adjusted their tactics to increase the amount of media coverage that the attacks would receive. It is believed that the major efforts made by the terrorists to kill U.S. and British civilians were part of the plan to garner more international press coverage.

The case of the LeT attacks in Mumbai illustrates the advantages that could accrue to an adversary from a maritime approach to a target. A maritime approach allows operatives to avoid border crossings and airport security, it offers opportunities to hijack a local vessel so that attackers can blend in with the normal local coastal traffic, and offers terrorist teams extra time for pre-attack planning as well as extra time for rest just before the attack commences. Finally, a maritime insertion allows terrorists to select very precise landing sites and infiltration routes.

The case of the LeT attacks in Mumbai also illustrates the disadvantages that can accrue to a terrorist enemy from a maritime approach to a target. First, once a full blown, large-scale assault has started, it can be very difficult to extricate the operatives. Second, the transport of large explosives aboard fishing vessels and trawlers is risky; thus, maritime terrorist strikes might be limited to relying on small arms to do their damage. Third, some kind of reconnaissance cell would have to be sent to the target city well in advance of the attack, providing an opportunity for a skilled intelligence agency to mount surveillance on the reconnaissance cell and break up the plot before the assault team could embark. Moreover, a maritime approach does not allow the terrorist team to disperse until it lands ashore. Even if the operatives approach in two or three different small boats, the interception of just one of the boats could drastically reduce the team’s numbers and effectiveness.

The fact remains that despite low technological instrumentation, a non state/state sponsored actor coming from open sea, could carry out effective surveillance & reconnaissance regarding the characteristics of targets at land/sea that could be attacked in future. Maritime Hybrid War may graduate to pose bigger economic threat than a military one. Furthermore, these economic costs could be imposed with relatively minor investments from the adversary.

What is worrisome is that now the Hybrid threat can emerge from anywhere in the vast oceans; be it floating armories, mercenary flotillas, or innocuous vessels carrying legitimate cargo with an embedded cyber war-waging cell. The maritime hybrid threat has to be interdicted using Naval and marine assets preferably before it reaches the shores and synergizes with other elements into a full-scale hybrid war. Even though the Indian Government has strived to put in place a very robust MDA there are intelligence gaps, which remain among the various agencies involved which could lead to slipping in of threatening elements physically or otherwise.

“The categories of warfare are blurring and do not fit into neat, tidy boxes. We can expect to see more tools and tactics of destruction — from the sophisticated to the simple — being employed simultaneously in hybrid and more complex forms of warfare.”

Professor Colin Gray

Cyber War

A word about the maritime dimension of cyber war would be proper at this stage. In recent years, there has been considerable discussion of the phenomenon of cyber warfare, its methods, and its ramifications. In essence there are three objectives that can be achieved by cyber-offensive activities: espionage (infiltrating the target’s information storage systems and stealing information), denial of service attacks (preventing Internet usage), and sabotage (infiltrating systems reliant on Internet connections and causing functional damage via malevolent programs). The media largely focuses on the use of computer programs as weapons in the cyber domain, but an attack on Internet infrastructure especially the submarine optical fiber cables is no less an option for terrorists, and often more devastating and effective. In fact, thousands of miles of more than 200 international submarine cable systems carry an estimated 99% of all the world’s trans-oceanic internet and data traffic. Widespread disruption to undersea communications networks could sabotage in excess of $10 trillion in daily international financial transactions, as stated by Michael Sechrist in a 2012 paper ‘New Threats, Old Technology Vulnerabilities in Undersea Communications Cable Network Management Systems[7]’ published by the Harvard Kennedy School. It is pertinent to note that satellites carry just about 5% of global communication traffic.

Even partial damage has extensive consequences because of the resultant jamming of traffic on the limited remaining connection. It is true that the diplomatic and military effects of having Internet communication with world at-large cut off would not be significant, but the direct and indirect economic consequences could be extremely expensive to our economy, especially with the transfer of much data to online cloud services that are actually placed abroad.

What bigger Hybrid threat can be posed at sea than the cutting off the subsea internet cables at time, place, and depths of one’s choosing or cutting off undersea facilities like VLF communication nodes and hydrophones? Would it not be an example of extreme denial of service weapon? Incidentally, such capabilities do exist with some nations today.

Two other aspects of hybrid war, which merit immediate attention of the maritime forces, are onslaught of sensors and swarm warfare.

Sensors

One very important aspect of the Hybrid warfare is transparency in every field because f utilization of various types of sensors. This ubiquitous sensing revolution promises enhanced awareness of physical, social, and cyber environments by combining three technological trends: the proliferation of ever cheaper and more capable sensors into virtually every device and context; large data aggregation and ready access to it using vast cloud-based archives; and cross-spectral data fusion & sense-making algorithms running on increasingly powerful processors. All of these trends are accelerating, at exponential rates. For instance, as brought by Capt John Litherland, USN (ret), in his paper ‘Fighting in the Open: The Impact of Ubiquitous Sensors on the Future Maritime Battle space’[8]:

-The worldwide total number of sensors has increased tremendously and will pass the one trillion mark, or more than 100 sensors for every person on earth.

– Mass production of electronics has led to significant enhancements in Sensing capabilities. Every smart phone today has a complete inertial, electronic and satellite navigation system comprising just a minor component of its price. Incidentally, a smart phone today hosts of many  of the sensors such as, accelerometer, temperature, gravity, gyroscope, light, linear acceleration, magnetic field, orientation, pressure, proximity, relative humidity, rotation vector and temperature[9].

-The worldwide digital data generation rate now exceeds one ZB (1021 bytes) per year and global storage exceeds 10 ZB.

-The ability to fuse and make sense of unstructured data from disparate sensors and incommensurable formats is being addressed by use of advances in processing capability and data handling algorithms.

-The advent of sensors has however, made the battle space transparent. Today, the warfare has to adapt to this transparency and let go traditional concepts of concealment and camouflage. Stealth technologies are unable to cope up with concealing signatures of the multitude of sensors being used across various domains, be it in the air, on the surface or under water. Navies today can no longer spring a surprise on the adversary because it is not feasible to operate blind in a battlefield littered with multi-spectral sensors, dispersed spatially, and operating in broadband.

The Indian Navy (IN) has to prepare for this aspect of hybrid warfare. The Indian Navy could utilize some of the concepts out lined by Litherland in his paper quoted above[10] :

– Dispersal – IN forces must disperse over as much of the maritime battle space as possible.

– Deception – IN must strategize on targeting the adversary’s sensor complex across multiple spectra with noise, false targets, and cyber attacks.

– Range – IN must gainfully implement Net Work Centric warfare to bestow ‘crippling effects’ at large distances when dispersed.

– Speed – together with range, the speed at which kinetic and non-kinetic effects can be imposed on the adversary will also be a critical factor in Naval war.

Unless the Indian Navy starts preparing now to fight in the Age of Sensors, it risks becoming vulnerable in the event of a hybrid war.

Swarms

Seminal work has been done on Swarm warfare by Prof. John Arquilla  and David Ronfeldt in their various writings (Swarming and Future of Conflict[11], Countering and exploiting Swarms[12], etc.) the present section derives from their thought processes. Swarm warfare has become the dominant doctrinal concept of certain navies like the Iranian Revolutionary Guard Corps Navy, which has about fifty missile and torpedo boats, along with other light coastal craft, all of which train to employ ‘ESBA’ i.e. like a swarm of bees tactics. The IRGC Navy also has several bases on small islands in the Persian Gulf, from which they can “swarm by fire” with the Chinese missiles in their inventory. China’s PLA Navy regularly practices swarm tactics with its missile, torpedo, and gunboats.

For the Indian Navy, comprised as it is of a number of high-value vessels, swarms pose a considerable and rising threat. Swarm attacks are likely not only from small boats, but also from aircraft, submarines, and drones. At present, the author is unaware of any fitting response by the Indian Navy focused on the use of counter-swarms of drones, and robots. The Indian Navy should also consider responses; as suggested by Prof  Prof. John Arquilla[13];  by designing swarms of much smaller craft like large numbers of jet-ski-sized drones or autonomous weapons whose goal would be to seek out and destroy incoming swarms with rockets, or by ramming and self-detonating. Small and swift Weapons could pose a far superior swarming threat to hybrid adversaries. IN could also think of small undersea swarming systems which are already on the design board to meet demands of clearing minefields, engaging enemy submarines, and carrying out ISR missions. Similarly, small aerial swarm weapon systems could prove exceptionally useful in dealing with air defense of carrier strike groups.

Conclusion

So ‘ere’s to you fuzzy-wuzzy, at your ‘ome in the Soudan; You’re a pore benighted ‘eathen, but a first class fightin’ man. 

Rudyard Kipling

Starting with the fundamental definition of Hybrid war in maritime context as “Naval irregular warfare plus cyber war and any other component that emerges in future”, the implications of cyber, sensors, and swarm warfare have been discussed in this article. However, new types of hybrid threats would keep surfacing and the IN has to be ready for them when called upon to counter them.

Hybrid war, being inherently nebulous and dynamic in nature, calls for constantly adapting naval doctrines and technologies to meet the emerging maritime hybrid threats.

(Based upon a talk ‘Maritime and Air Dimensions of Hybrid War’ delivered by the author during ‘National Seminar: Hybrid Warfare’ on 02 Nov 2016 under aegis of Centre for Land Warfare Studies, New Delhi)

[1] https://www.scribd.com/document/40211290/Strategic-Implications-of-Hybrid-War-a-Theory-of-Victory

[2] smallwarsjournal.com/blog/journal/docs-temp/344-sadowski-etal.pdf

[3] http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA591803

[4]https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/csi-studies/studies/96unclass/iregular.htm

[5] http://www.rand.org/pubs/monographs/MG1127.html

[6] https://www.rand.org/pubs/occasional_papers/2009/RAND_OP249.pdf

[7] http://ecir.mit.edu/images/stories/sechrist-dp-2012-03-march-5-2012-final.pdf

[8] http://www.secnav.navy.mil/innovation/HTML_Pages/2015/07/FightingInTheOpen.htm

[9] https://www.quora.com/how-many-different-sensors-are-available-inside-a-smartphone

[10]http://www.secnav.navy.mil/innovation/HTML_Pages/2015/07/FightingInTheOpen.htm

[11] http://www.rand.org/pubs/documented_briefings/DB311.html

[12]http://www.secnav.navy.mil/innovation/HTML_Pages/2015/04/CounteringAndExploitingSwarms.htm

[13] ibid

Smarter Eyes in the Skies

(Published 10 Sep 2016, CLAWS)

“…[t]he main advantage of using drones is precisely that they are unmanned. With the operators safely tucked in air-conditioned rooms far away, there’s no pilot at risk of being killed or maimed in a crash. No pilot to be taken captive by enemy forces. No pilot to cause a diplomatic crisis if shot down in a “friendly country” while bombing or spying without official permission”  [1]

Medea Benjamin, 2013

The aim of this article is to look at some of the developments and the technological spinoffs that are likely to have a profound impact upon uninterrupted 24/7 gathering of real time strategic intelligence, surveillance, and reconnaissance data.

Platforms

X-37 B. The X-37 B or the Orbital Test Vehicle[2] mystery aircraft of the US Air Force has nearly completed one year in orbit and it is not known when it will land. The X-37 B program has been shrouded in mystery since its inception some time in 1999 as a NASA program. The X-37 B has a wingspan of 24 m, a length of 2.9 m, a height of 4.6 m, and a launch weight of 4990 kg. It is powered by GaAs solar cells and lithium-ion batteries after it is boosted into space. It can remain in orbit for periods of over one year. As per US Air Force fact sheet the mission of the X-37B Orbital Test Vehicle, or OTV, is “an experimental test program to demonstrate technologies for a reliable, reusable, unmanned space test platform for the U.S. Air Force. The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America’s future in space and operating experiments which can be returned to, and examined, on Earth”[3]. It states further that OTV missions till now have spent a total of 1,367 days in orbit, “successfully checking out the X-37B’s reusable flight, re-entry and landing technologies.” As per US Air Force fact sheet[4] some of the technologies being tested include advanced guidance, navigation and control, thermal protection systems, avionics, high temperature structures and seals, conformal reusable insulation, lightweight electromechanical flight systems, advanced propulsion systems & autonomous orbital flight, reentry and landing. It is said that X-37 B has a XR-5A Hall Thruster made by Aerojet Rocketdyne and that it carries an experimental propulsion system developed by the US Air Force.

VULTURE. VULTURE is an acronym for DARPA’s Very-high altitude, Ultra-endurance, Loitering Theater Unmanned Reconnaissance Element[5] program. The objective of the Vulture program was to enable an uninterrupted ISR and communication missions spanning 5years or more by remaining airborne at very high altitude. The VULTURE was envisaged to operate as a single platform, or as a formation of multiple aircraft, or as a constellation providing infrastructure augmentation/recovery. The project transformed into Boeing/ Phantom Works Solareagle (VULTURE II) project, which aimed to reach that five-year endurance mark with its 120m wingspan but the project was cancelled in 2012. Interestingly, both Facebook and Google have taken the lead from DARPA and have launched programs for ultra long endurance stratospheric drones.

High Altitude Airship. The Lockheed Martin High Altitude Airship[6] (HAA™)  is an un-tethered, unmanned lighter-than-air vehicle that is being designed to operate above the jet stream in a geostationary position to deliver persistent station keeping as a surveillance platform, telecommunications relay, or a weather observer. It will provide the military with, ever-present ISR, and rapid communications connectivity over the entire battle space. The airship is estimated to survey a 600-mile diameter area and millions of cubic miles of airspace.

Global Hawk. Global Hawk is the long-range, high-altitude ISR UAV of the US Air Force. It can fly for up to 32 hours at altitudes as high as 60,000 feet, with a range of 12,300 nautical miles[7], providing imaging and signals intelligence, as well as communications support, to troops around the world. It is battle proven and gives near-real-time, day and night, all weather high-resolution imagery of large geographical areas. The US Air Force plans to spend $4Bn on upgrading Global Hawk drone program[8].

Triton MQ 4C. The US Navy will continue with Triton MQ-4C that can stay aloft for over 24 hours at 17,000 m. It has speeds of up to 610 km/h[9]. Its surveillance sensor is the AN/ZPY-3 Multi-Function Active Sensor (MFAS) X-band AESA radar with a 360-degree field-of-regard, capable of surveying 7,000,000 sq km of sea. It utilizes the radar in inverse synthetic aperture mode[10] to identify a target in any weather condition and take high definition radar pictures, then use the advanced image and radar return recognition software of the onboard automatic identification system (AIS) for classification.

Sensors Packages

Gorgon Stare. In December 2015, the US DOD confirmed[11] that the Gorgon Stare wide-area airborne surveillance (WAAS) system had been incorporated in to the Reaper MQ-9 UAV of the US Air Force missions flying over Afghanistan. The basic configuration of Gorgon Stare consists of five monochrome charge-coupled device (CCD) daylight cameras and four thermal cameras built into a 25-inch EO/IR turret with a separate pod for data links. The advanced version of the above is the Autonomous Real-Time Ground Ubiquitous Surveillance Imaging System, (ARGUS-IS).

ARGUS. The ARGUS-IS, is a  DARPA project contracted to BAE Systems and is a type of  of wide-area persistent surveillance system[12]. It is a camera system that utilizes hundreds of mobile phone cameras in a mosaic to video and auto-track every moving object within a 36 square mile area. ARGUS-IS provides military users an “eyes-on” persistent wide area surveillance capability to support tactical users in a dynamic battle space or urban environment. The sensor uses 4 lenses and 368 cell phone cameras of 5 megapixels each. The major components of the system are a 1.8 Gigapixels video system and its processing subsystems, in the air and on the ground. In early 2014, ARGUS-IS achieved initial operating capability (IOC) with the U.S. Air Force as part of Gorgon Stare Increment 2[13]. The system streams a million terabytes of HD video per day. The enormous amount of data can be stored  indefinitely and subjected to review as and when required[14]. It is understood that ARGUS can be easily deployed on UAVs like Predator and HALE. The software utilized by ARGUS-IS is Persistics.

Software Persistics. The brain for handling of the immense amount of data gathered by the advanced surveillance cameras is a software program called Persistics developed by Lawrence Livermore National Laboratories. Fundamentally, it is a data compression program, which can compress the raw wide area video data from aircraft and UAVs by 1000 times and achieve a reduction of pre-processed images by a factor of ten. Persistics compresses data that is essentially a background data like jitter, static images of the background etc. while retaining the images of military interest. The system functions by; carrying out  video stabilization[15] using ‘pixel-level dense image correspondence’; background image compression; aligning image positions obtained from different cameras, and output images of moving objects with sub-pixel resolution.

Inference

The military is moving rapidly towards gathering of strategic intelligence, surveillance, and reconnaissance data. The processing of such voluminous data is also being undertaken by advanced techniques utilizing artificial intelligence to a large extent. Nevertheless, the kill loop still takes considerable time from detection by the unmanned vehicles in the sky to activation of the armed response. Time is therefore ripe for the long endurance UAVs to start deploying armament on their pods. However, the automation of the drones to execute the kills on their own, without a human in the loop, is still some years away.

 

[1] Benjamin, Medea. 2013. Drone Warfare: Killing by Remote Control. New York, NY: Verso.

[2] http://www.space.com/32839-x37b-military-space-plane-one-year-mission-otv4.html

[3] http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104539/x-37b-orbital-test-vehicle.aspx

[4] Ibid.

[5] http://www.globalsecurity.org/intell/systems/vulture.htm

[6] http://www.lockheedmartin.com/us/products/lighter-than-air-vehicles/haa.html

[7] http://www.northropgrumman.com/Capabilities/GlobalHawk/Pages/default.aspx

[8] https://defensesystems.com/articles/2015/05/19/air-force-global-hawk-spending-plans.aspx

[9] http://www.northropgrumman.com/Capabilities/Triton/Pages/default.aspx

[10] http://www.northropgrumman.com/Capabilities/Triton/Documents/pageDocuments/Triton_data_sheet.pdf

[11] http://www.janes.com/article/56720/dod-confirms-gorgon-stare-to-be-operational-in-afghanistan

[12] www.baesystems.com/en/download-en/20151124113917/1434554721803.pdf

[13] https://www.flightglobal.com/news/articles/sierra-nevada-fields-argus-is-upgrade-to-gorgon-stare-400978/

[14] http://www.extremetech.com/extreme/146909-darpa-shows-off-1-8-gigapixel-surveillance-drone-can-spot-a-terrorist-from-20000-feet

[15] http://www.afcea.org/content/?q=coping-%E2%80%A8big-data-quagmire

 

Resurgence of High Power Microwave Weapons

(Published 27 Jul 2016, CLAWS)

 

“It will fully suppress communications, navigation and target location, and the use of high-precision weapons….The system will be used against cruise missiles and will suppress satellite-based radio location systems. It will actually switch off enemy weapons.”

Vladimir Mikheyev, adviser to the Radio-Electronic Technologies Group (KRET), Russia.

Directed energy weapons (DEWs) emit energy in the desired direction and cause damage to the target by transferring energy and generating uneven heat stresses. The DEWs comprise two distinct types of weapons namely, the high-energy lasers (HELs), and the high power microwaves (HPMs). The US Air Force has been funding research and technical programs into development of High Power Microwave Weapons since the 1980’s. The frequencies for this region range from 1 x 106 hertz to 1 x 1011 hertz. It is expected that HPM weapons would; facilitate all-weather attack of enemy electronic systems at lightening speeds; cover multiple targets in a defined area; enable surgical strikes to deny, degrade, damage, and destroy targets; and cause reduced collateral causalities. HPM weapons have the capability to cause large-scale damage to the electronics of the target irrespective of its state of operation. Interestingly the inherent technology of the HPM allows the HPM to defend it obviating the need for a separate defensive system for its protection.

The HPMs could also be used for attacks on strategic assets like, military and defense industrial centers, rail yards, military and civil communications hubs, industrial facilities, logistic nodes, supply depots, equipment stockpiles, ammunition depots, fuel storages, troop carriers, and so on. Despite the inherent advantages the HPM weapons program has had to grapple with difficulties in designing compact high peak power HPM sources; compact high gain, ultra-wideband (UWB) antennas; and efficient, high power/ pulse power drivers.

In 2012, there were indications that the progress in to HPM weapons had not met desired success levels[1]. The Active Denial Weapon proto type of the US Air Force was not successful under all weather conditions. It also suffered from its unwieldy size, heavy energy consumption, and technical complexity therefore; it was not very battlefield friendly. Counter-electronics High Power Microwave Advanced Missile Project (CHAMP) is another US Air Force and Boeing technology demonstrator that has not been successfully completed. It was for developing an air-launched directed-energy weapon capable of targeting electronic systems on attacking missiles. Based upon CHAMP technology, Raytheon had demonstrated an anti UAV, ground-based air defense high-powered microwave system in 2013. Other projects like Gypsy and MAXPOWER have also not been productionised until now.

In the field of HPMs Russia made two important announcements during the past year. In Jun 2015, Russia revealed its microwave cannon[2], which is supposed to disable drones and warheads at a distance of up to six miles. It is claimed that weapon is equipped with a high-power generator and reflector antenna, and is mounted on the chassis of BUK surface-to-air missile system. Further, when mounted on a suitable platform, the microwave cannon can also provide credible 360 degrees perimeter defense. It was claimed by Yuri Mayevsky, CEO of the weapon’s developer, Radio-Electronic Technologies Group (KRET) that the system can target the enemy’s deck-based, tactical, long-range, and strategic aircraft, electronics, and suppress foreign military satellite’s radio-electronic equipment[3]. The system could be fitted on multiple platforms. In July this year, the Russia announced that its sixth generation combat drones would be fitted with microwave weapons. It also claimed that microwave weapons are already available with Russia, which can hit targets tens of kilometers away[4] but the energy levels at which such weapons operate are unsafe for manned aircraft and therefore they will be positioned on combat drones likely to be operational by 2025.

The above Russian developments and their strategic impact appear to have breathed new life in to HPM weapons program of the US Air Force. Last year US Air Force and Boeing announced developing a High Power Microwave / Electromagnetic Pulse generator that can be fitted to a cruise missile for targeting installations below the missile as it flies[5]. In May this year, the US Air Force has asked the industry to supply the source and antenna for its High Pulse Electro Magnetics program, HPEM, vide notification BAA-RVKD-2014-0003[6]. The task includes the development of broadband high power amplifiers, tunable high power oscillators, and broadband antennas that can be used to develop empirical radio frequency (RF) effects over a broad range of frequencies, pulse lengths, pulse repetition frequencies, and power densities. One of the key areas of the HPEM project pertains to Electromagnetics (EM) Weapons Technology. This looks into developing HPEM technologies into pulsed-power weapons, investigating high-energy particle beams; and creating weak and strongly ionized plasmas using ultra short pulse lasers (USPL).

Counter-Directed Energy Weapons (CDEW). The Office of Naval Research (ONR) is funding basic research in to countering the threats that emanate from directed energy weapons systems, such as high-energy lasers or high-power microwaves. Its CDEW Program is aimed at defending and/or negating the effects of enemy’s high-energy lasers, high-power microwaves, and other directed energy weapons in the maritime domain[7]. Raytheon has been awarded $4.8 million[8] to continue the development of EW payload for CHAMP, as well as the Conventional Air-Launched Cruise Missile.

In India, it is understood that DRDO is collaborating with institutions in Kolkata to develop new age weapons that use microwaves and millimeter waves[9].

 

 

[1] http://www.nature.com/news/microwave-weapons-wasted-energy-1.11396

[2] http://www.popularmechanics.com/military/weapons/a16044/russian-anti-drone-microwave-gun/

[3] http://www.militaryaerospace.com/articles/2015/07/directed-energy-weapon.html

[4]http://nationalinterest.org/feature/russias-next-military-game-changer-microwave-weapons-16946

[5] http://dutchsinse.com/5162015-usaf-boeing-moves-forward-with-high-power-microwave-weapon-scalable-emp-generator/

[6] https://www.fbo.gov/index?s=opportunity&mode=form&id=0b63699bb7eb9c2c073191934e419352&tab=core&_cview=1

[7] http://www.onr.navy.mil/en/Media-Center/Fact-Sheets/Counter-Directed-Energy-Weapons.aspx

[8] http://investor.raytheon.com/phoenix.zhtml?c=84193&p=irol-newsArticle&ID=2150555

[9] http://www.indiandefensenews.in/2015/07/drdo-keen-to-start-advanced-research-on.html