Category Archives: ISR

Cupping the Pacific — China’s Rising Influence

(Published March 27, 2018  IndraStra Global http://www.indrastra.com/2018/03/Cupping-Pacific-China-s-Rising-Influence-003-04-2018-0055.html#more)

Cupping the Pacific — China’s Rising Influence

China’s Rising Influence in the Pacific through Sale of Arms

There is one aspect of the recent revolution in Hawaii which seems to have been kept out of sight, and that is the relation of the islands, not merely to our own and to European countries, but to China. How vitally important that may become in the future is evident from the great number of Chinese, relatively to the whole population, now settled in the islands…….China, however, may burst her barriers eastward as well as westward, toward the Pacific as well as toward the European Continent.

                        Alfred Thayer Mahan, Captain, United States Navy. New York, Jan. 30, 1893

 

Arms sales are always for enhancement of self-interest of the seller country, they are primarily for furtherance of own strategic and commercial interests. The strategic reasons include, widening of areas of influence vis-a-vis a perceived adversary, projection of power in the desired region, quid pro quo proposition in times of hostilities through utilisation of recipient’s military facilities and resources or for gaining political upper hand in international bodies. Arms sales are invariably never without a hidden agenda on the part of the seller. The sales are justified under the garb of strengthening self defence capabilities of the recipient or providing support against an adversary. The commercial interests include furtherance of own defence manufacturing capabilities, enhancement of the profits accrued to its own defence industries or as a quid pro quo for other products of interest from the recipient.

This article takes in to account only the certified arms sales as recorded by SIPIRI and does not detail political, social, educational or other soft-influence approaches in the Pacific region by China. The article considers towering influence of the United States in the Pacific region since the second world war as a given and hence the arms sales by the US are not discussed vis-à-vis China. Further, an attempt has been made to indicate to the rising Chinese influence in view of its sales of arms in the region so as to spur some timely corrective measures to ensure cooperative and collective freedom of the Pacific commons. The countries considered in the article comprise SE Asia and South America.

American Approach to the Pacific Ocean

The American approach to the Pacific is largely an implementation of the thoughts of Mahan detailed in his book ‘The Interest of America in Sea Power, Present and Future’[1]. He had held forth on the importance of the Sandwich Islands (Hawaii) for the Pacific, stating that they should be under the American control. He foresaw that the commercial shipping from Japan and China would pass near to the Hawaii island group and thus provide America a strong position in the Pacific to safeguard its maritime interests. He had said that Hawaii forms the centre of a circle of about 2100 nm radius in the Pacific, the periphery of which touches the archipelago system of Australia- New Zealand as well as the American west coast. The power which will hold Hawaii island group, in his opinion, would over see the Pacific. It is for the simple reason that in case of hostilities the supply lines would stretch back to over 3000-4000 nm each way making such an assault against America unstainable. The United States had structured its maritime thrust in to the Pacific along a virtual ‘arrow head’ from its west coast to Hawaii on to Guam and thereafter to Taiwan. Further, the concept of Island chains was constructed utilising island groups in the north-west pacific[2] during the cold war, to contain the spread of communism by Soviet Union and China. Some distances which describe the US ~6940 nm arrowhead across the Pacific up till Taiwan are: San Francisco – Hawaii (Honolulu) ~2095nm; Hawaii (Honolulu) – Guam ~3333nm; Guam – Taiwan ~512 nm. With Hawaii and Guam as entrenched US naval bases and the fact that a warship can sail 600 nm per day at 25kts the arrowhead is well established logistically to sustain prolonged operations from the west coast of the US. The allies would also provide unstinted support in times of inevitable hostilities in the region.

Chinese Perception of the Pacific

Chinese view their seaboard frontier as seas of denied opportunities, seas where their access is perpetually under watch by inimical powers. The Chinese threat perception encompasses Japan in the north and Malacca in the south. The access to the SLOCS from the Gulf is overlooked by India right up to Malacca straits, thereafter by nations which have been under the western influence. Indian island Chain of Laccadives sits astride the important 9-degree channel SLOC and the Indian island chain of Andamans looks over the entry to Malacca straits. It may be interesting to note that Singapore and Malaysian port of Penang lie just ~1176 nm and ~807 nm from Port Blair in Andamans.

The construct of the island chains is viewed as an attempt by the Western Powers to inhibit its naval expansion to within the First Island Chain. Once China has started looking seaward it finds layers of obstruction lined up in the Pacific to dissuade it from becoming a modern Naval power. The Chinese aim in the Pacific appears to be; to overcome or pierce the island chains at their weak points by strengthening its onshore long-range missile capabilities and its naval might. Japan and Guam are considered the strongest components of the first and second Island Chains. Taiwan and Philippines are relegated to a weak component status. However, it is held that Taiwan needs to be in the Chinese fold for a strong grip on the seas.

The US-Japan-Australia-India ‘quad’ (with France in support), if and when it takes concrete shape, would definitely be taken as an attempt to thwart Chinese ambitions of attaining global power status in its envisaged multipolar world. The positioning of road/rail mobile Anti-Ship Ballistic Missiles (ASBM) DF-21 D and DF-26 C in the recent past is to put a serious deterrent in place to thwart any intimidating attempt by the US Navy. It is claimed that the DF 21 D (CSS-5 Mod 5) has a range of ~1,500 km and is armed with a Manoeuvrable Re-entry Vehicle (MaRV). DF 21 D has the ability to attack large ships like the aircraft carriers. DF-26, has a claimed range of 3,000-4,000 km enough to strike Guam. It is estimated that China has command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) capabilities required for targeting ships at sea. However, ASBMs also require over-the-horizon (OTH) targeting support that can integrate target information from multiple sources. Once fully deployed the Chinese ASBM system-of-systems would be the world’s first system[3] capable of targeting a moving carrier group with long-range ballistic missiles fired from land-based mobile launchers and would pose a grave threat to the US forces and bases in the region.

China appears to be forging along a strategic trajectory in the Pacific in that it is developing its Navy to blue water capabilities, upgrading its land based ballistic missiles to target mobile assets of the adversary with conventional and nuclear warheads at great ranges, and courting countries in and across the Pacific through Arms sales to build up sympathetic logistic linkages to counter US influence. It is opined that China would keep building up its military might and its cross-Pacific network through sale of arms and/or dole of economic benefits to nations till such time that Taiwan comes firmly in its fold thereafter it could plan for making a bold move in the Pacific to challenge the US power.

Arms sales by China

Chinese arms and weapons are in demand as China has started supplying modern equipment which can meet the economic requirements of middle and lower tier countries. The arms are cheap, reasonably reliable and are supplied with access to easy term loans from Chinese banks. Chinese unmanned aerial vehicles and cruise missiles are considered nearly as good as those offered for export by western countries. This has made China a leading arms supplier across the globe. It is understood that the guiding tenets of China’s arms export include, non-interference in internal matters of the country like its political or human rights record; perceived strengthening of the recipient’s self-defence capabilities; and bringing about regional arms balance. China also offers transfer of technology which makes countries gain a degree of self-reliance and allows development of their own defence industry. Whether the loans offered push the recipients into a debt trap or force it to part with its resources or make it pliable to extract military gains for China is yet to be seen. The fact that the importing country becomes politically indebted to China cannot be denied, even when a country is hedging or diversifying its sources of arms import, as it would definitely adopt a more benign stance where China is concerned.

The major countries where China seeks influence in the Pacific are those in SE Asia, Oceania and countries in South America.

Arms Transfer to SE Asian Countries by China

China has arms trade with seven of Southeast Asia’s countries namely Indonesia, Myanmar Thailand, Malaysia, Cambodia, Laos and Timor-Leste.

Some of the major Arms transfers to SE Asian countries by China during the period 2010-2017 as per SIPIRI Arms trade register are:

Indonesia- Surface to Air Missiles (SAM), Anti-Ship Missiles (ASM), Naval Guns, Close-in weapon system (CIWS), Anti-Aircraft Guns (AA Guns), Multi-Rocket Launchers (MRL), various Radars, Unmanned Combat Aerial Vehicles (UCAV), Unmanned Aerial Vehicles (UAV).

Myanmar- Frigates, various Radars, ASM, Trainer/combat aircraft, Naval Guns, Main Battle Tanks (MBT), MRL, UAV, UCAV, SAM, Transport aircraft, Fifth generation aircraft J-17, Armoured Fire Support Vehicle (AFSV), Armoured Personnel Carrier (APC).

Malaysia- Offshore patrol vessels (OPV)

Thailand- Self-propelled MRL, ASM, Arty Locating Radar, SAM, Tank, Submarines, Infantry Fighting Vehicle (IFV), Anti-ship and Anti-Submarine Warfare (ASW) torpedoes.

Cambodia- Helicopters, Transport aircraft

Laos- Transport and light aircraft

Timor-Leste- Patrol aircraft

As far as Philippines is concerned, China has recently donated 3000 Assault rifles for tackling the drug mafia.

Interests in Oceania

 ‘China is not just filling a political vacuum created by Western neglect…. [i]t is incorporating the Pacific islands into its broader quest to become a major Asia-pacific power with a long-term goal to replace the US as the preeminent power in the Pacific Ocean’.

John Henderson and Benjamin Reilly, 2003[4]

Among the Pacific rim countries, Chinese relations with Australia and New Zealand have been very good traditionally, however, there has been a turbulence with respect to Australia in the recent past. Its relations with Tonga have raised eyebrows in the neighbourhood since it has a population of only 300-400 Chinese people and offers practically no economic benefits apart from its vast unexplored EEZ and fishery resources.

A word about maritime Tonga would not be out of place here. Tonga has a settlement history of over 3000 years based upon the discovery of Lapita pottery fragments on the islands. Lapita people are now supposed to be the ancestors of the Polynesian people. The Lapita people were considered to be proficient sailors and expert navigators.  The Polynesian people succeeding Lapita settlers were great sailors and sea warriors. Tongans also continued the seafarers’ legacy and excelled in building large bi-hulled, 20-30-meter-long, Kalia sailing crafts. The structure of the Kalia was unique in that it had one larger and one smaller hull. Stability could be achieved with the smaller hull rising with the ocean swell and the larger hull dipping in the swell.  They were joined by a platform forming a sort of bridge. The Tongans have been crisscrossing the pacific islands regularly over the past three millennia.  In fact, it is said that no Fiji boat ventured to and from Tonga without Tongan sailors on board. The Tongans procured stone tooling from Fiji, Society islands and Samoa. Tonga had also became a trading hub during the past millennia. Tongan waters have been a witness to one of the most filmed mutinies at sea amidst its Ha’apai island group, namely “the Mutiny on the Bounty”.

Tonga, today, sits astride the SLOC from Asia to South America & Australia/New Zealand to the US and has underground sea cables running through its EEZ. It also has rights to a number of satellite launch sites[5]. The area has a large number of air strips and ports.

Apart from the economic aid, humanitarian assistance and education programs, Chinese ships make frequent goodwill visits to the islands.  China had also gifted a turbo prop aircraft to Tonga, which had ruffled feathers in New Zealand. Recently the King Tupou VI of Tonga visited China where he stated that “Tonga agrees with China on its vision to build a new type of international relations and stands ready to work with China to build a community with a shared future for mankind.”[6]

Keeping the above in view, it does not appear that Chinese largesse towards these islands is a display of its charitable and humane side. It is Tonga’s strategic location on the third island chain that could be the more likely reason for the Chinese strategic foray in to the region.

Arms transfers to South American countries by China

It is noteworthy that China has not only made arms sales to SE Asian countries and is making friendly overtures in Oceania but that it has also made deep inroads through arms sales in South America. Significantly, it has sold arms to Venezuela, Peru, Argentina, Ecuador, Bolivia, and Trinidad & Tobago.

Some of the major Arms transfers to South American countries by China during the period 2010-2017 as per SIPIRI Arms trade register are:

Venezuela- Radars, Trainer/combat aircraft, Short Range Air-to-Air Missiles (SRAAM), Transport aircraft, self-propelled MRL/Mortar, infantry fighting vehicles (IFV), Armoured Protected Vehicles (APV), Armoured personnel carriers (APC), light tanks, ASM

Peru- SAM, 122 mm MRL

Argentina- APCs

Ecuador- Air Search Radars

Bolivia- Trainer/ combat aircraft, helicopters, APV

Trinidad and Tobago- OPVs

Strategically China has thus ‘cupped’ the Pacific by securing not only its south eastern shores and Oceania but also the western shores of South America.

San Francisco System

A Japanese peace treaty was signed on 6 September 1951 between 49 allied countries and Japan which also contained elements of regional security. A separate security treaty was signed between the US and Japan on that day which made Japan’s economy, military, and diplomacy dependent upon the US. There were a slew of bilateral agreements and treaties thereafter which resulted in a loose and flexible collective security & cooperation structure in the region. The result was a hub and spoke structure with Japan, South Korea, Taiwan, the Philippines, Thailand, and Australia as spokes and the US as the hub. Historian John W Dower coined the term San Francisco System (SFS) to describe this informal arrangement under the security umbrella of the United States. The SFS continues to this day in the absence of any other formal security structure covering the Pacific region.

Conclusion

China has been working on the strategy of casting a strategic net across the seas with its arms sales which raises security concerns for nations directly or indirectly dependent upon sea trade. It has almost put in place a multi-polar power structure which would be difficult to dislodge. The string of pearls in the IOR, has grown in to a studded ‘Jade Necklace Across the Oceans’[7] with its pendant as the cupped Pacific.

The Chinese arms sales should not be wished away as insignificant since the market share of the US remains undented, it should instead be assessed in terms of collapsing geo-strategic and geo- political space of the US and its future ramifications.

The option available today in the Pacific is striving for freedom of the Ocean commons and loosening the trade & economic web spun by China through strengthening the spokes in the San Francisco System. It may be worthwhile to look for additional spokes in the nearly 70-year-old system especially in the third island chain. Island nations with rich maritime heritage like Tonga offer a good strategic foot hold and geostrategic advantage in the Pacific. For example, Tonga is ~3182 nm from US base at Guam, ~2752 nm from Hawaii, and ~1959 nm from Sydney. It has a large swath of uninhabited islands which can be utilised for security infrastructure. With the available sensor technologies innovative and cost effective ISR stations can be created which in turn would help in the development of the South Pacific Nations and wean them away from the influence of China.

Picture1

A new node in these islands nations offers the US the flexibility of using the existing sea ports and airstrips as well as an alternate manoeuvring and staging Area. In turn it could accrue scarce strategic space and strengthen the third island chain.

Time to act is slipping away!

[1] Mahan A. T. The Interest of America in Sea Power, Present and Future. http://www.archive.org/stream/theinterestofame15749gut/15749.txt (Accessed 10 Mar 2018)

[2] On 4 January 1954, US State Department Advisor John Foster Dulles propounded the Island Chain Concept, comprising of three island chains. The key component of the First Island Chain was Taiwan (it was thereafter christened as one of the Unsinkable Aircraft Carriers); it extended from northern Philippines & Borneo, up to Kuril Islands. The second line of defence was from Mariana Island to Islands of Japan. The Third Chain’s key component was Hawaii; it began at Aleutians and ended in Oceania.

[3] Andrew S. Erickson. Chinese Anti-Ship Ballistic Missile Development and Counter-intervention Efforts

Testimony before Hearing on China’s Advanced Weapons. Panel I: China’s Hypersonic and Manoeuvrable Re-Entry Vehicle Programs U.S.-China Economic and Security Review Commission, Washington, DC.23 February 2017. https://www.uscc.gov/sites/default/files/Erickson_Testimony.pdf (Accessed 18 Mar 2018)

[4] John Henderson. Benjamin Reilly. Dragon in paradise: China’s rising star in Oceania. The National Interest; Summer 2003. https://crawford.anu.edu.au/pdf/staff/ben_reilly/breilly1.pdf (Accessed 18 Mar 2018)

[5] What Does China Want with Tonga? Featuring Gordon Chang & Cleo Paskal’, online video, 2014, https://www.youtube.com/watch?v=K5vTeUJbN3M, (accessed 15 March 2018).

[6] China, Tonga agree to promote strategic partnership. Xinhua. 24 Mar 2018.

http://www.xinhuanet.com/english/2018-03/02/c_137009307.htm (accessed 17 March 2018).

[7] Kulshrestha, Sanatan. “FEATURED | Jade Necklace: Naval Dimension of Chinese Engagement with Coastal Nations Across the Oceans”. IndraStra Global 02, no. 12 (2016) 0032. http://www.indrastra.com/2016/12/FEATURED-Jade-Necklace-Naval-Dimension-of-Chinese-Engagement-with-Coastal-Nations-Across-the-Oceans-002-12-2016-0032.html  (Accessed 19 Mar 2018)

Smarter Eyes in the Skies

(Published 10 Sep 2016, CLAWS)

“…[t]he main advantage of using drones is precisely that they are unmanned. With the operators safely tucked in air-conditioned rooms far away, there’s no pilot at risk of being killed or maimed in a crash. No pilot to be taken captive by enemy forces. No pilot to cause a diplomatic crisis if shot down in a “friendly country” while bombing or spying without official permission”  [1]

Medea Benjamin, 2013

The aim of this article is to look at some of the developments and the technological spinoffs that are likely to have a profound impact upon uninterrupted 24/7 gathering of real time strategic intelligence, surveillance, and reconnaissance data.

Platforms

X-37 B. The X-37 B or the Orbital Test Vehicle[2] mystery aircraft of the US Air Force has nearly completed one year in orbit and it is not known when it will land. The X-37 B program has been shrouded in mystery since its inception some time in 1999 as a NASA program. The X-37 B has a wingspan of 24 m, a length of 2.9 m, a height of 4.6 m, and a launch weight of 4990 kg. It is powered by GaAs solar cells and lithium-ion batteries after it is boosted into space. It can remain in orbit for periods of over one year. As per US Air Force fact sheet the mission of the X-37B Orbital Test Vehicle, or OTV, is “an experimental test program to demonstrate technologies for a reliable, reusable, unmanned space test platform for the U.S. Air Force. The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America’s future in space and operating experiments which can be returned to, and examined, on Earth”[3]. It states further that OTV missions till now have spent a total of 1,367 days in orbit, “successfully checking out the X-37B’s reusable flight, re-entry and landing technologies.” As per US Air Force fact sheet[4] some of the technologies being tested include advanced guidance, navigation and control, thermal protection systems, avionics, high temperature structures and seals, conformal reusable insulation, lightweight electromechanical flight systems, advanced propulsion systems & autonomous orbital flight, reentry and landing. It is said that X-37 B has a XR-5A Hall Thruster made by Aerojet Rocketdyne and that it carries an experimental propulsion system developed by the US Air Force.

VULTURE. VULTURE is an acronym for DARPA’s Very-high altitude, Ultra-endurance, Loitering Theater Unmanned Reconnaissance Element[5] program. The objective of the Vulture program was to enable an uninterrupted ISR and communication missions spanning 5years or more by remaining airborne at very high altitude. The VULTURE was envisaged to operate as a single platform, or as a formation of multiple aircraft, or as a constellation providing infrastructure augmentation/recovery. The project transformed into Boeing/ Phantom Works Solareagle (VULTURE II) project, which aimed to reach that five-year endurance mark with its 120m wingspan but the project was cancelled in 2012. Interestingly, both Facebook and Google have taken the lead from DARPA and have launched programs for ultra long endurance stratospheric drones.

High Altitude Airship. The Lockheed Martin High Altitude Airship[6] (HAA™)  is an un-tethered, unmanned lighter-than-air vehicle that is being designed to operate above the jet stream in a geostationary position to deliver persistent station keeping as a surveillance platform, telecommunications relay, or a weather observer. It will provide the military with, ever-present ISR, and rapid communications connectivity over the entire battle space. The airship is estimated to survey a 600-mile diameter area and millions of cubic miles of airspace.

Global Hawk. Global Hawk is the long-range, high-altitude ISR UAV of the US Air Force. It can fly for up to 32 hours at altitudes as high as 60,000 feet, with a range of 12,300 nautical miles[7], providing imaging and signals intelligence, as well as communications support, to troops around the world. It is battle proven and gives near-real-time, day and night, all weather high-resolution imagery of large geographical areas. The US Air Force plans to spend $4Bn on upgrading Global Hawk drone program[8].

Triton MQ 4C. The US Navy will continue with Triton MQ-4C that can stay aloft for over 24 hours at 17,000 m. It has speeds of up to 610 km/h[9]. Its surveillance sensor is the AN/ZPY-3 Multi-Function Active Sensor (MFAS) X-band AESA radar with a 360-degree field-of-regard, capable of surveying 7,000,000 sq km of sea. It utilizes the radar in inverse synthetic aperture mode[10] to identify a target in any weather condition and take high definition radar pictures, then use the advanced image and radar return recognition software of the onboard automatic identification system (AIS) for classification.

Sensors Packages

Gorgon Stare. In December 2015, the US DOD confirmed[11] that the Gorgon Stare wide-area airborne surveillance (WAAS) system had been incorporated in to the Reaper MQ-9 UAV of the US Air Force missions flying over Afghanistan. The basic configuration of Gorgon Stare consists of five monochrome charge-coupled device (CCD) daylight cameras and four thermal cameras built into a 25-inch EO/IR turret with a separate pod for data links. The advanced version of the above is the Autonomous Real-Time Ground Ubiquitous Surveillance Imaging System, (ARGUS-IS).

ARGUS. The ARGUS-IS, is a  DARPA project contracted to BAE Systems and is a type of  of wide-area persistent surveillance system[12]. It is a camera system that utilizes hundreds of mobile phone cameras in a mosaic to video and auto-track every moving object within a 36 square mile area. ARGUS-IS provides military users an “eyes-on” persistent wide area surveillance capability to support tactical users in a dynamic battle space or urban environment. The sensor uses 4 lenses and 368 cell phone cameras of 5 megapixels each. The major components of the system are a 1.8 Gigapixels video system and its processing subsystems, in the air and on the ground. In early 2014, ARGUS-IS achieved initial operating capability (IOC) with the U.S. Air Force as part of Gorgon Stare Increment 2[13]. The system streams a million terabytes of HD video per day. The enormous amount of data can be stored  indefinitely and subjected to review as and when required[14]. It is understood that ARGUS can be easily deployed on UAVs like Predator and HALE. The software utilized by ARGUS-IS is Persistics.

Software Persistics. The brain for handling of the immense amount of data gathered by the advanced surveillance cameras is a software program called Persistics developed by Lawrence Livermore National Laboratories. Fundamentally, it is a data compression program, which can compress the raw wide area video data from aircraft and UAVs by 1000 times and achieve a reduction of pre-processed images by a factor of ten. Persistics compresses data that is essentially a background data like jitter, static images of the background etc. while retaining the images of military interest. The system functions by; carrying out  video stabilization[15] using ‘pixel-level dense image correspondence’; background image compression; aligning image positions obtained from different cameras, and output images of moving objects with sub-pixel resolution.

Inference

The military is moving rapidly towards gathering of strategic intelligence, surveillance, and reconnaissance data. The processing of such voluminous data is also being undertaken by advanced techniques utilizing artificial intelligence to a large extent. Nevertheless, the kill loop still takes considerable time from detection by the unmanned vehicles in the sky to activation of the armed response. Time is therefore ripe for the long endurance UAVs to start deploying armament on their pods. However, the automation of the drones to execute the kills on their own, without a human in the loop, is still some years away.

 

[1] Benjamin, Medea. 2013. Drone Warfare: Killing by Remote Control. New York, NY: Verso.

[2] http://www.space.com/32839-x37b-military-space-plane-one-year-mission-otv4.html

[3] http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104539/x-37b-orbital-test-vehicle.aspx

[4] Ibid.

[5] http://www.globalsecurity.org/intell/systems/vulture.htm

[6] http://www.lockheedmartin.com/us/products/lighter-than-air-vehicles/haa.html

[7] http://www.northropgrumman.com/Capabilities/GlobalHawk/Pages/default.aspx

[8] https://defensesystems.com/articles/2015/05/19/air-force-global-hawk-spending-plans.aspx

[9] http://www.northropgrumman.com/Capabilities/Triton/Pages/default.aspx

[10] http://www.northropgrumman.com/Capabilities/Triton/Documents/pageDocuments/Triton_data_sheet.pdf

[11] http://www.janes.com/article/56720/dod-confirms-gorgon-stare-to-be-operational-in-afghanistan

[12] www.baesystems.com/en/download-en/20151124113917/1434554721803.pdf

[13] https://www.flightglobal.com/news/articles/sierra-nevada-fields-argus-is-upgrade-to-gorgon-stare-400978/

[14] http://www.extremetech.com/extreme/146909-darpa-shows-off-1-8-gigapixel-surveillance-drone-can-spot-a-terrorist-from-20000-feet

[15] http://www.afcea.org/content/?q=coping-%E2%80%A8big-data-quagmire

 

New Dimensions of Swarm Warfare

 

(Published 15 Jul 2016,CLAWS)

 

“They were coming at us like bees”. “We would kill one lot and then more would appear. It was the most amazing thing.”

Lt Col Twitty, Commander 3rd Battalion 15th Infantry, Operation Iraqi Freedom, Iraq, 2003

 

Swarms in nature have always intrigued humans because individually the animals or the insects do not appear to have intelligence but in a swarm, they are able to move as a cohesive intelligent formation capable of taking actions befitting an intelligent life form. Some of the world’s largest swarms in animal kingdom include mosquitoes, Argentine Ants, Christmas Island Crabs, krill, springbok, and locusts. Peter Miller, in Swarm Theory[1] brings out that swarm intelligence works because of ‘simple creatures following simple rules, each one acting on local information’ and also that, a smart swarm is a group of individuals who respond to one another and to their environment in uncertainty, complexity, and change.

The use of swarms in warfare has been observed for over 2000 years, some examples include:

– Battle of Alexandria Eschate, 329 BC Scythians – mounted Archers,

– Battle of Carrhae, 53 BC Parthians – mounted Archers

– Battle of Khambula, 1879 Zulus – Dismounted light infantry armed with spears

– Battle of Britain, 1940 – Air Battle of Sept 15, 1940 British single-seat Spitfire and Hurricane fighter Aircraft

– Battles for Objectives Moe, Larry, and Curley, Baghdad, Operation Iraqi Freedom, 2003 Iraqi and Syrian light infantry

Swarming has also been looked in to by US Military institutes in academic studies and war games. RAND has studies by John Arquilla and David Ronfeldt, ‘Swarming and the Future of Conflict’, 2000; Sean J.A. Edwards, ‘Swarming on the Battlefield: Past, Present, and Future’, 2000; and Sean J.A. Edwards, ‘Swarming and the Future of Warfare’, 2005. In the last document, the author has opined that:

swarming occurs when several units conduct a convergent attack on a target from multiple axes. It involves pulsing where units rapidly converge on a target, attack it, and then disappear.

– swarming is of  two types, one where units arrive on a battlefield as a single mass, disassemble, and attack the enemy from many directions, and the second, where the dispersed units converge and attack without forming a single mass.

– five variables are essential for a swarm attack to be successful these are, superior situational awareness, elusiveness, standoff capability, encirclement, and simultaneity.

A new approach to achieve coordination amongst a system of large number of simple robots has emerged during biological studies of swarms in nature as well as during applications of Artificial Intelligence in to mechanical swarms it is called ‘Swarm Robotics’. Ant robots are swarm robots that communicate via trail of markings, for example, heat, odor, light, chemical substances,   and transceivers.

Microbots is a generic term applicable to very small robots spanning robots of sizes from, small robots (<100 cm), minirobots (<10 cm), milirobots (< 1 cm), microbots (<1 mm) to nanobots (<one micrometer).

Some important projects in robotic swarms include:

– Symbiotic Evolutionary Robot Organisms, ‘Symbrion’[2]. This project is funded by the European Commission. It is inspired by the biological world. Its aim is to develop a framework in which a homogeneous swarm of miniature interdependent robots can co-assemble into a larger robotic organism for problem solving. It has its roots in previous two projects called I-SWARM and SWARMROBOT.

– 3D printing of microbots[3]. Engineers at Harvard have developed an ingenious layered folding 3D printing process by which it is feasible to mass-produce robotic insects. The size is <2.5 cm in diameter and <0.25 cm in height. Many such pop up microbots can be printed from a single sheet.

– Kilobot[4] (Self-organizing thousand-robot swarm). Another project undertaken by engineers at Harvard aims at providing a simple platform for enactment of complex behaviors using 1024 small robots or Kilobots. It has been heralded as a stepping-stone in development of collective artificial intelligence.

All of the above projects and many more on similar lines have been funded by military R&D agencies including DARPA. All have military applications as is evident from the fact that the U.S. Military is looking at incorporating roles for swarms in its transformation programs[5]. These swarms of intelligent UGVs, UAVs, and UUVs are intended to sense, recognize, and adapt to the changing situation. The sensor networks will be self-aware, self-healing, and self-defending.

In October 2015, US Army tested swarms of commercial off the shelf drones for applications in the military. Barry Hatchett of the Army’s Program Executive Office for Simulation, Training, and Instrumentation stated, “It has been proved that consumer [drones] can be used for intelligence, surveillance and reconnaissance, distraction tactics and, in the future, the ability to drop small munitions.”[6]

In a landmark trial, this year the US Navy’s Low-Cost UAV Swarming Technology (LOCUST) program aims to have thirty drones flying together without having to be individually controlled, maintaining separation safely like a bird swarm. The operator would be piloting the whole swarm as a single unit instead of controlling individual UAVs. The trial would have far-reaching impact upon future of swarm warfare in the US armed forces.

The day is not far when the battlefield would graduate from ISR microbot swarms to weaponised microbot swarms carrying new age explosives delivered ingeniously into the enemies heart. The technology would leap frog to provide counter swarms as also counter-counter swarms. The era of the small and many appears to be dawning on the battlefield.

“I need a stealth bomber that’s going to get close, and then it’s going to drop a whole bunch of smalls – some are decoys, some are jammers, some are [intelligence, surveillance, and reconnaissance] looking for where the SAMs are. Some of them are kamikaze airplanes that are going to kamikaze into those SAMs, and they’re cheap. You have maybe 100 or 1,000 surface-to-air missiles, but we’re going to hit you with 10,000 smalls, not 10,000 MQ-9s. That’s why we want smalls.”[7]

Colonel Travis Burdine, USAF

 

[1] http://ngm.nationalgeographic.com/2007/07/swarms/miller-text/1

[2] http://cordis.europa.eu/project/rcn/85478_en.html

[3] https://www.seas.harvard.edu/news/2012/02/new-mass-production-technique-robotic-insects-spring-life

[4] http://www.seas.harvard.edu/news/2014/08/self-organizing-thousand-robot-swarm

[5] US Army’s future unit of action UA, US Navy’s After Next, and US Air force’s Global Strike Force programs.

[6] http://www.computerworld.com/article/2999890/robotics/us-army-tests-swarms-of-drones-in-major-exercise.html

[7]http://www.businessinsider.com/air-force-wants-swarms-of-small-kamikaze-drones-to-defeat-missiles-2016-5?IR=T