Category Archives: Indian Ocean

Offshore Patrol Vessels (OPVs)- Navy’s Armed Patrol

 

(Published SP’s Naval Forces, Dec 2016-Jan 2017. Vol 11 No. 6 )

“It is not surprising that some OPVs are multirole and heavily armed, lighter scantling and faster, whereas others are larger, heavier, therefore slower, and equipped for the purposes of survey [and] pollution control. I think in the past some of the vessels which now come under the banner of OPV would have previously been called something else, such as corvette, light frigate or fishery protection vessel, but due to the current fad they fall under the generic term of OPV.”

Mike Stamford, Abu Dhabi Ship Building (ADSB)

A modern navy operates various types of warships to meet its diverse roles from simple coastal patrols to power projection and war fighting. While the navy has aircraft carriers, cruisers, destroyers, frigates, submarines, and missile boats for its offensive missions it also has different class of ships for patrol, presence and support roles.

The grant of 200 nm EEZ and the extension from three nm to 12 nm of the maritime boundary/territorial waters of a nation brought to fore requirement of naval ships that could fulfill the roles of extended coastal security as well as provide security cover to the EEZ. The other coastal roles that are needed for the naval craft include, pollution control, SAR, law enforcement, firefighting, towing etc. Larger naval ships cannot maneuver in the restricted and shallow coastal waters and would largely remain underutilized if deployed for EEZ patrols. This had given rise to the birth of Offshore Patrol Vessel (OPV) Class of ships. The OPVs however, are being built to sizes and roles specific to a nation; they may range in size from a large attack craft to nearly a frigate size ship. They are proving economic for smaller nations because of their low cost and flexible roles. They are mainly being used for, extended coastal patrols, EEZ protection, maritime presence, law enforcement at sea, HADR, and if needed, for Arctic or Antarctic ice patrols. The primary roles for the combat OPVs are AAW and ASuW. They can be classified as combat OPVs and specific capability OPVs. The combat OPVs are faster and could be equipped with ASW, AAW, or ASuW weapon systems. These OPVs can take part in combat and meet the survivability standards of naval warships.

Weapons on Combat OPVs

While some nations have equipped their OPVs with Exocet and similar missiles, the majority of the combat role OPVs carry three types of weapons namely; a large/medium caliber main gun, a small caliber auxiliary gun, and a machine gun. The machine gun is also carried by the onboard helicopter.

Main Gun.  A warship’s main gun can be a large caliber gun or a medium caliber gun. Many navies prefer medium caliber guns like the Oto Melara 76 mm, for their OPVs. The main gun’s maximum effective range is substantially higher than the auxiliary and the machine gun’s maximum effective ranges. Firing from long range is particularly important in conventional warfare, but not necessarily when fighting with terrorists. In littoral areas, there could be many merchant vessels, which could make it almost impossible to classify a ship at long distances. The only way to classify an unknown vessel from a long distance is with a helicopter. Therefore, even though the maximum effective range of the main gun ranges from 7000 meters to 10000 meters, the OPV would not be able to fire its main gun until the enemy boat is classified as hostile. The probability of hit is about 80% at 500 m.

Auxiliary Gun. The auxiliary gun for the OPV is a small caliber gun for example a 30 mm CIWS naval gun. The auxiliary gun’s presence is important especially when the OPV is not able use its main gun for some reason. If the hit probability of the auxiliary gun is high, it can be a game changer.

Machine Guns. A machinegun, normally a 12.7 mm, is operated by OPV personnel, and it has a relatively short effective range when compared to the ranges of the main and the auxiliary guns. Its main purpose is to warn other ships and to protect its own ship from small targets. The machine guns are very useful in crowded areas, since it is very difficult to classify a small boat from a long distance. It is also impossible to use missiles or long-range guns at shorter distances. Further, rules of engagement may not allow firing at hostile craft unless it approaches within a certain threatening range. In this case, the OPV can use its machine guns both for warning the approaching craft and for protecting itself. The probability of hit at 500 m is about 50%; it increases as the distance to target decreases.

Onboard Helicopter and its weapon. The high-speed capability of the helicopter makes it one of the most valuable assets of an OPV. It can perform search, detection, and reconnaissance operations in relatively short amounts of time, and with high accuracy. Technological advances also allow the helicopters to use cameras that help them to classify the targets. When the helicopter detects an unknown vessel, it moves towards that target for classification at its maximum speed, which ranges from 50 knots to 180 knots. The friendly craft have AIS devices, which allow classification of almost all of the vessels in the area. However, there are could be some vessels that cannot be classified via AIS these could be identified by the helicopter. The classification distance may depend on weather conditions, capability of the camera, or the training of the operators. A 12.7 mm machine gun is normally used on the helicopter.

Combat OPVs

Larger combat OPVs, for example the UAE Baynunah class OPVs are combatants to meet the requirements of combat patrols in Strait of Hormuz. The Baynunah class are fitted with weapon systems including the MBDA Exocet MM40 Block 3 surface-to-surface missile (SSM) and the Raytheon Evolved SeaSparrow Missile (ESSM) RIM-162 surface-to-air missile (SAM). They also have an Oto Melara 76 mm gun and two 27 mm cannons. They also carry an organic helicopter, mine-avoidance sonar system, MASS decoy system, 3-D radar and a full communications suite. These OPVs meet the AAW and ASuW requirements of the UAE for protection of its assets and merchant shipping in the region. With a displacement of ~ 640 tons, they can achieve speeds of up to 32 kt. The first of these OPVs was built in France by Constructions Mécaniques de Normandie, while the rest are being built in the UAE by Abu Dhabi Ship Building (ADSB).

BVT of UK (now BAE Systems Maritime – Naval Ships) has built combat OPVs, for Oman that, have a length of 98.5 m with a displacement of 2500 tons. They carry Exocet anti-ship missile and Mica vertical-launch close-area air-defense systems.

Dutch shipbuilder Schelde Naval Shipbuilding (DSNS) has built four OPVs for the Royal Netherlands Navy under Project Patrouilleschepen. These ships are 108 m long, displace 3750 tons and have a speed of up to 21.5 kt. They are to meet the requirement for patrol, surveillance and interdiction operations in the Netherlands EEZ. They carry a helicopter, a single 76 mm gun, a 20-30 mm gun and two machine guns.

Navantia of Spain has already constructed four Buque de Acción Maritima patrol ships for the Spanish Navy. These are built to a modular design for protection of maritime resources; maritime interdiction; port security; and counter-terrorism patrolling. These OPVs carry a helicopter and are armed with a single Oto Melara 76 mm gun and two 20 mm cannon, and fitted with the ‘Sistema de COMbate de los Buques de la Armada’ SCOMBA combat management system (CMS). Two more of the same OPVs are under construction.

Special Purpose OPVs

The specific capability OPVs are built to commercial standards and are equipped with lesser armament. They are rigged for specific role that they are designed for and may not be able to take part in battle at sea since they are bulkier and slower than the combat OPV. An area of developing role for OPVs are endurance and presence missions in the Arctic and Antarctic regions, which would necessitate changes in its design to meet operating conditions in broken ice. With the likely hood of opening up of Northwest Passage, it is expected that maritime trade from China and Japan would use this route for carting goods to Europe. Rolls Royce has been designing OPV type ships for meeting the Arctic/ Antarctic conditions. The Danish Arctic patrol ship, the Knud Rasmussen class is an example of such ships.

Trinidad and Tobago Coast Guard had contracted BVT for building three presence OPVs for protection of oil and gas reserves, fishery protection, and for anti-drug operations however, the contract was cancelled and the OPVs were delivered to Brazil.

ThyssenKrupp Marine Systems (TKMS) of Germany has developed a series of 1,000-2,000 ton OPVs. These are: a 67 m fast OPV; an 81 m Guardian-class OPV displacing 1,800 tons; an 85 m, 1,900-ton Sentinel-class multimission OPV; and a larger 99 m version of the Sentinel OPV displacing 2,100 tons. They are built to commercial standards, the vessels are equipped with a helicopter and boat capability, have modest speed, sensors and weapons equipment.

BAE systems provides 90 m OPVs to Brazil, Thailand and UK.

India

As detailed in the website of IN, in its constabulary role, the IN is employed to enforce law of the land or to implement a regime established by an international mandate. The protection and promotion of India’s maritime security is one of the IN’s prime responsibilities. This encompasses a constabulary role, where it relates to threats that involve use of force at sea. The tasks that the IN has to undertake in the constabulary role ranges from Low Intensity Maritime Operations (LIMO) to maintaining good order at sea. It also includes coastal security, as part of India’s overall maritime security. With the establishment of the ICG in February 1978, law enforcement aspects of the constabulary role within the Maritime Zones of India (MZI) have been transferred to the ICG. Security in major harbors and ports are the purview of the port authorities, aided by customs and immigration agencies. Constabulary tasks beyond the MZI are vested with the Indian Navy. After the terrorist attacks on Mumbai on 26 November 2008, the overall responsibility for coastal security has been mandated to the Indian Navy, in close coordination with the ICG, State marine police and other central/state government and port authorities.

The Indian Coast Guard, ICG has been tasked to protect India’s maritime interests and enforce maritime law, with jurisdiction over the territorial waters of India, including its contiguous zone and exclusive economic zone. The ICG also operates Offshore Patrol Vessels. ICG deploys  Samar class Advanced Offshore Patrol Vessels having 2005 tons displacement, Vishwast class Offshore Patrol Vessels (1800 tons displacement) and Vikram class Offshore Patrol Vessels (displacement 1220 tons) . However, the number of OPVs appears insufficient to meet the requirement of patrolling and providing security to more than 7000 km of coastline and Island territories of Andaman-Nicobar and Lakshadweep.

The Indian Navy had started inducting the Offshore Patrol Vessels in the late eighties, but the numbers inducted appear to be far less than that required to effectively safeguard the maritime assets, sea lines of communications and tackle sea pirates.

Goa Shipyard Limited in India has been building a series of 105 m-long, 2,215 ton OPVs for the Indian Navy. They are fitted with a 76 mm naval gun and two 30 mm cannons, and are capable of operating a single Hindustan Aeronautics Limited (HAL) Dhruv helicopter.

The Pipavav NOPV class are naval offshore patrol vessels being built by Pipavav Defence and Offshore Engineering Company Limited. In June 2016, it was reported that the shipyard, which has been acquired by Reliance Defence, is now accelerating work on the delayed order where the first ship was supposed to be delivered in early 2015. As per the revised schedule, the first ship will now be delivered in early 2017 and all ships will be ready for induction by the end of 2017. The ships are being constructed in two batches of two and three ships with a shorter delivery schedule for the second batch.

Significantly, the IN OPVs can also be modified to accommodate Twenty-foot Equivalent Unit, (TEU) payloads, hence they can be considered as low cost warships with bigger roles.

Conclusion

OPVs have carved out a place for themselves mainly due to enhancement of territorial waters and the declaration of EEZ. The smaller nations too have equipped themselves with OPVs because of their versatility and low costs. The cost of the OPVs depend upon the combat systems and sensors required by a country to be put on board. To keep the costs low the combat system should therefore, be mission specific and limited to the low-intensity capabilities. While OPVs are not equipped for full-fledged, combat they should be able to accomplish the constabulary tasks they are assigned to do. The OPV arena is set to expand with the likely hood of the opening of the North West Passage to Europe.

Plugging Gaps in Strategic MDA

(Published SP’s Naval Forces, Oct 2016-Nov 2016, Vol 11 No.5)

Plugging Gaps in Strategic MDA

 

Maritime Domain Awareness is “the effective understanding of anything associated with the global maritime environment that could impact the security, safety, economy or environment of U.S. This is accomplished through the integration of intelligence, surveillance, observation, and navigation systems into one common operating picture (COP) that is accessible throughout the U.S. Government.

National Security Presidential Directive 41, 2004

The oceans are complex mediums whose nature provides ample opportunity for an enemy to avoid detection—weather, sea states, and coastal land mass all present considerable challenges to modern sensors. Peacetime economic use of the seas complicates this problem enormously. The oceans are the world’s foremost (and most unregulated) highway, home to a vast and wide variety of international neutral shipping that possess no apparent threat. Determining the enemy in such a crowded and complex environment is difficult during conventional war, but during an asymmetric conflict such as the global war on terror (GWOT), it is a formidable task. Oceans demand a much higher level of awareness than that is normally required in a conventional naval conflict. This is recognised by the formal definition of MDA as articulated by the US government vide their definition of MDA quoted above

It is apparent that the goal of MDA is far more than simply looking for potential maritime enemies poised to attack India. The implications of “Anything associated” with the maritime environment that can influence the security, safety, economy, or environment” go far beyond a classic maritime threat. As per the US interpretation, these include smuggling of people or dangerous cargoes, piracy, proliferation of Weapons of Mass Destruction (WMD), identification and protection of critical maritime infrastructure, oil spills, weather, and environmental concerns among other events.

Maritime events that could potentially affect India are not the only wide-ranging element of MDA it is also essential that threats be identified as they evolve. The global nature of MDA activities occurring overseas and in foreign ports is very much a part of MDA. MDA must therefore be exercised over all oceans worldwide, and potentially cover all maritime interests that ultimately effect India. Putting in place an effective MDA is a herculean task viewing the range of potential security challenges and enormous geographic area represented by the maritime domain. MDA’s core is applying the vessel tracking process to a layered defence model centred on the coastline of India, the ultimate goal of which is to detect potential threats as early and as far away from the Indian coastline as possible. As there is no single high value unit to protect, MDA “layers” are expanded to include an entire coastline with the overall goal of coordinated surveillance. Not all areas in these “layers” are considered equally, but rather additional attention is given to areas that are potential targets for the terrorist/enemy.

Gaps in Strategic MDA. MDA’s goal is to obtain a sense of global awareness that reaches beyond the confines of the tactical and regional levels. If MDA was simply a defensive strategy against a known military or terrorist threat, it could be obtained by forming defensive layers around India. However, as an informational/awareness system, its goals are far broader, seeking to understand all potential maritime threats to India, many of which could originate overseas in an inoffensive manner. Strategic MDA requires a broad perspective and capabilities at the highest levels of analysis, intelligence, and policy. The Government of India has put in place a formidable plan for MDA, and the individual systems are being setup prior to final integration and fusing of data. It is expected that the MDA would be fully functional in a year or so. However, a broader oceanic horizon needs to be factored in while acquiring futuristic technological capabilities. This should be inclusive of not only extensive and broader spatial operating arena, but also much wider and intensive foray in to the verticals below the surface to the sea bed and above up to periphery of the atmosphere. Unless implications of this nature are anticipated and factored in, technological forecasts themselves would trail behind the rapid advancing pace of technology and the synergies being achieved due to harmonization and adaptation inter and intra scientific fields. Therefore, it is imperative that holistic perspectives into the information consciousness arena include the oceanic domain awareness as well as it’s connect with India’s security and MDA.

The coast and Open Ocean are critical domains for the security of a nation with sea as boundaries, both at home and abroad. National-security operations in the ocean take place globally and often require continuous, near real time monitoring of environment using tools such as autonomous sensors, targeted observations, and adaptive modeling. These capabilities, combined with improved understanding of the ocean environment enabled by other ocean science research activities, will support accurate ocean-state assessments and allow future forces to conduct joint and combined operations in near shore and deep-ocean, anywhere and at anytime.

Thus, it can be surmised that currently the MDA focuses upon the maritime security scenario specific to naval operations; there is a need to look into the overarching oceanic environment. This would require sophisticated sensors and computational capabilities. There is therefore a requirement to fuse the tactical, and regional components with strategic knowledge based architecture.

This expansion will require advancing sensor and technology capability and/or development, particularly for autonomous & persistent observations. Data collected by the observing systems must be accessible through a comprehensive national data network, through either a single system or a distributed network. Developing this data network will require new methodologies that address gaps in data collection, sharing, and interoperability of technologies, and should permit integration of existing research into operational systems.

Technology Perspective

Asia-Pacific is a vast region and therefore data generation and collection is a humongous and costly task. The coverage and resolution provided by manned resources and satellites remains grossly deficient considering the large area, time needed, and multitude of tasking requirements. This gap can be plugged by utilizing the autonomous Aerial, surface and underwater systems. These could provide persistence, mobility, and real time data. The manned systems could thereafter be deployed more selectively.

 “…[t]he main advantage of using drones is precisely that they are unmanned. With the operators safely tucked in air-conditioned rooms far away, there’s no pilot at risk of being killed or maimed in a crash. No pilot to be taken captive by enemy forces. No pilot to cause a diplomatic crisis if shot down in a “friendly country” while bombing or spying without official permission” 

Medea Benjamin, 2013

In essence, the autonomous unmanned systems provide the advantages of large area coverage, prolonged deployment, low risk, much lower acquisition & operating costs, direct tasking and near real time data reporting. In case of surface and under water systems however the transit times are higher than the Aerial systems.

Aerial Systems. The Lockheed Martin High Altitude Airship (HAA™) is an un-tethered, unmanned lighter-than-air vehicle that is being designed to operate above the jet stream in a geostationary position to deliver persistent station keeping as a surveillance platform, telecommunications relay, or a weather observer. It will provide the military with, ever-present ISR, and rapid communications connectivity over the entire battle space. The airship is estimated to survey a 600-mile diameter area and millions of cubic miles of airspace.

Global Hawk is the long-range, high-altitude ISR UAV of the US Air Force manufactured by Northrop Grumman. It can fly for up to 32 hours at altitudes as high as 60,000 feet, with a range of 12,300 nautical miles, providing imaging and signals intelligence, as well as communications support, to troops around the world.

The US Navy will continue with Triton MQ-4C UAV of Northrop Grumman. It can stay aloft for over 24 hours at 17,000 m. It has speeds of up to 610 km/h. Its surveillance sensor is the AN/ZPY-3 Multi-Function Active Sensor (MFAS) X-band active electronically scanned array AESA radar with a 360-degree field-of-regard, capable of surveying 7,000,000 sq km of sea.

Sensors Packages. The ARGUS-IS, is a  DARPA project contracted to BAE Systems and is a type of  of wide-area persistent surveillance system. It is a camera system that utilizes hundreds of mobile phone cameras in a mosaic to video and auto-track every moving object within a 36 square mile area. ARGUS-IS provides military users an “eyes-on” persistent wide area surveillance capability. The system streams a million terabytes of HD video per day. The enormous amount of data can be stored  indefinitely and subjected to review as and when required. It is understood that ARGUS can be easily deployed on UAVs. The software utilized by ARGUS-IS is Persistics developed by Lawrence Livermore National Laboratories. It is a data compression program, which can compress the raw wide area video data from aircraft and UAVs by 1000 times and achieve a reduction of pre-processed images by a factor of ten

Autonomous Surface and Sub Surface Vehicles. ASV unmanned Marine Systems of UK manufacturer C-Enduro, which is a long endurance autonomous surface vehicle, used to safely and cost effectively collect data at sea. Built to operate in all marine environments, C-Enduro uses energy harvesting technology combined with a self-righting hull. It can house different sensor packages like, keel mounted sensors, CTD lowered by winch, meteorological sensors, Acoustic Doppler Current Profiler ADCP, Multi Beam Echo Sounder MBES, side-scan sonar, acoustic modem, ASW (towed array or dipping), and electronic warfare.

Thales, is involved in the Defence Science Technology Laboratory (DSTL research programme MAPLE (Maritime Autonomous Platform Exploitation). The MAPLE programme is developing the future architecture for Unmanned Systems Command and Control, by enabling multiple unmanned platforms, such as unmanned air vehicles (UAV), unmanned surface vehicles (USV), and unmanned underwater vehicles (UUV), and their payloads to be innovatively commanded and controlled from a single control station.

Wave Gliders; due to their unique design; provide advantages of; indefinite, long range mission endurance; all weather operations; unlimited ocean area coverage; real time data acquisition; multiple sensor payloads; low acquisition & operating costs, and autonomous operation. The main manufacturer is Liquid Robotics. One of Liquid Robotics wave glider, the SHARC is designed to meet unique requirements of Defense and National Security applications. Over 200 Wave Gliders have been delivered internationally.

The principle of operation of Ocean Gliders involves small changes in buoyancy and wings to achieve forward motion. Control of pitch and role is done by adjusting ballast. It uses GPS as well as internal sensors for navigation. It can travel thousands of miles at depths of up to 1000m. There are three established manufacturers of sea gliders , namely iRobot who make Seaglider, Teledyne Webb manufacture Slocum Glider and Bluefin Robotics who make Spray Glider. ACSA, a French glider firm, has recently launched the SeaExplorer, a streamlined, wingless glider. A glider called Sea Wing, has been developed at the Shenyang Institute of Automation, in China, by Yuan Dongliang of the country’s Institute of Oceanography. It was tested last year and operated successfully in the western Pacific at depths of up to 800 meters. Japanese researchers, too, are building gliders. One is a small, low-cost version called ALEX that has independently movable wings and the other is a solar-powered device called SORA.

Data Analytics. The use of autonomous systems for  MDA is an imperative for India. However, it would also be important for military officials to make sense of the vast amount of data that is being generated. A simple full day UAV mission can provide upwards of 10 terabytes of data of which only about 5% is analyzed and the rest stored. Currently, analysts are restricted by the download speeds of data depending upon their locations. Untagged data leads to downloading of similar data from other sources by the analyst to firm up their conclusions. ISR data from different sources is stored in different locations with varying access levels, this leads to incomplete analysis. Single network domain providing access to data at multiple levels of security classification is not yet available. This is leading to a synergetic relationship with digital industry where in military no longer develops its own hardware and software denovo, but harnesses and modifies the ‘commercial of the  shelf’ (COTS) items. Some common technologies in the data analytics ecosystem are, Apache Hadoop, Apache Hive / Apache Pig, Apache Sqoop, In-memory Databases, NoSQL Databases and MPP Platforms. Some of the firms working in this space with the military are Palantir, Sap, Oracle, Teradata, and SYNTASA. Security of collected and processed data also would require adequate attention, this could be dovetailed with the cyber defense effort of the armed forces.

Major gaps in the Indian MDA infrastructure can thus be plugged by the use of autonomous systems along with the associated data analytics and data protection platforms.

Proactive Defense Infrastructure Planning of Indian Island Territories A Conceptual Case Study of Lakshadweep (Minicoy and Suheli Par Islands)

Tuesday, April 05, 2016

ANALYSIS | Proactive Defense Infrastructure Planning of Indian Island Territories

IndraStra Global  4/05/2016 03:28:00 PM  Featured , India , Indian Navy , Maritime ,Sea Lanes of Communications , South Asia

Proactive Defense Infrastructure Planning of Indian Island Territories

A Conceptual Case Study of Lakshadweep (Minicoy and Suheli Par Islands)

By Rear Admiral Dr S. Kulshrestha (Retd.), Indian Navy  and Rahul Guhathakurta, IndraStra Global

 

The strategy for coastal and offshore security has been articulated in the document “Ensuring Secure Seas: Indian Maritime Security Strategy” of the Indian Navy. The strategy envisages ‘to reduce, counter and eliminate the threat of armed attack by sub-conventional groups, and also influx of arms and infiltration by armed attackers from the sea, against coastal and offshore assets’.

The chapter “Strategy for Conflict’ covers the actions for coastal and offshore defense. Essentially the operations will be carried out by the Indian Navy in synergy with the Indian Army, Air Force, Coast Guard, and other security agencies.

Defending India’s Coast, Offshore Assets, EEZ and Island Territories.

India has a formidable naval force with both blue water and littoral capabilities; it also has a credible Coast guard, which would work in unison with the Indian Navy in times of war. Further India has put in place a powerful template for marine domain awareness, intelligence and protection of the coastal and offshore areas, in the aftermath of the terrorist attack of 26 Nov 2008. Some of the measures include; setting up of Multi Agency Centres (MAC) for intelligence inputs and reports; registration of fishing vessels by states; placing in orbit Indian Regional Navigation Seven Satellite System and satellite GSAT 7 ; setting up of a coast wide radar chain; raising Marine Police force, Marine Commandos Rapid Reaction Force and a Sagar Prahari Bal (SPB);setting up layered patrolling; putting in place The National Command Control Communication and Intelligence network (NC3IN) etc.

Prominent Gaps in Coastal and Offshore Defence

Thus, the layered defence of Indian coast and its offshore areas consists of Indian Navy, the coast guard, the marine commando & Sagar Prahari Bal (SPB) and the marine police. All these are info-linked for maximum advance knowledge and in a way form a net worked coalition. However, there apparently is a gap as far as setting up the coastal and offshore area defences per se is concerned. It lacks the delay, denial, disruption, and demoralizing (D4) capability, which is essential in today’s environment. This capability should be acquired by leveraging the perceived threats presented by the submarine, mines, small craft and cruise missiles.

The defence plan should be an asymmetric and proactive approach to defence with defining it as a zone that comprises two segments of the defence environment:-

·                     Seaward- the area from the shore to the open ocean, which must be defended to thwart expeditionary forces at sea.

·                      Landward- from the shore to the area inland that can be supported and defended directly from the shore.

The existing gap in Indian defences can be obviated with very potent defence elements by including:-

·                     Comprehensive assessment of threats from expeditionary forces to ports/ harbors.

·                     Procurement of midget/ miniature submarines with torpedoes and mine laying capability along with arrays of underwater sensors for environment, intrusion information, navigation and communication.

·                     Procurement of UAVs/USVs with intelligent software for remote operations as swarms.

·                     Procurement of Unmanned Underwater Sensor and Weapon Carriers capable of transmitting integrated underwater picture to fixed or mobile stations, firing torpedoes and laying mines.

·                     Procurement and laying of cable controlled mine fields, other mine fields across various depths zones.

·                     Coastal extended reach anti ship cruise missile batteries.

·                     Coastal gun batteries with ability to carry out precision attack on surface ships at ranges greater than 50 km.

·                     All systems networked for an ironclad protection of the Indian Coast and offshore assets and territories.

·                     Development of weapons specific for use in coastal areas and

·                     Development of systems for collection of oceanographic information.

A robust Indian coastal and offshore defense plan and its implementation is an essential element of economic wellbeing of India, as it would ensure security of sea trade, shipping, fishing, marine resources, and offshore assets as well as security of the EEZ.

Rights of a Coastal State w.r.t. EEZ

Within its EEZ, a coastal state has sovereign rights for exploring, exploiting, conserving, and managing natural living and non-living resources of the waters superjacent to the seabed and its sub soil. Further, it can exploit and explore production of energy from water, winds, and currents. The EEZ remains an open zone with freedom of innocent passage for all. The EEZ legal regime is different from that governing territorial waters and high seas, and contains certain characteristics of both.

However, in a recent judgment regarding the Enrica Lexie (Italian marines) case, the Supreme Court of India has declared the region between the contiguous zone and the 200 nautical miles in to the sea as ‘High Seas’. The Supreme court has said that Article 97 of the United Nations Convention on Law of the Sea (UNCLOS) is not applicable as shooting was a criminal action and not a navigation accident.

China has been maintaining its right to regulate foreign military activities in its EEZ, as it feels that it has the right to prevent any activity that threatens its economic interests or security. It also asserts that its domestic laws have jurisdiction in its EEZ. The Chinese law requires foreign entities to obtain prior approval to carryout resource exploitation, fishing, and marine research. As far as military activities are concerned, it holds them as prejudicial to ‘peaceful purposes’ provision of the Laws of the Seas Convention. This interpretation has led to a number of minor standoffs between it and the United States of America.

India is also one of the countries, which mandate prior permission before any maintenance, or repairs are carried out to the submarine cables running on the floor of its EEZ.

With respect to military activities by foreign militaries in the EEZ, India along with Bangladesh, Brazil, Cape Verde, Malaysia, Pakistan, and Uruguay require obtaining of prior permission. North Korea has prohibited any such activity within 50 nm of its territory and Iran has completely prohibited the same.

As far as oceanographic surveying is considered, again some countries require prior permission, in fact, China registered protests against the activities of USNS Bowditch and India against HMS Scott and USNS Bowditch, which were gathering military data by undertaking oceanographic survey. Coupling the above with increased proliferation of submarines in the region, the instances of clandestine underwater and ASW surveys would only increase. There are bound to be incidents involving intruder submarines in future and states would therefore be monitoring activities in their EEZs diligently.

EEZ Security Components

Two essential components of effective EEZ security management comprise of surveillance and deterrence. Some of the drawbacks of EEZ surveillance systems in use today include; inability of patrol boats to carry out surveillance, since their missions are area denial, SAR or interdiction; UAV’s have much better sensor packages but need a large infrastructure for 24/7 surveillance; HF radars are affordable but need very large areas for installation; Microwave radars suffer from limited horizon; and patrol aircraft incur huge costs. Since radars have difficulty in automatically identifying unknown and devious small vessels and the electro optic systems are heavily weather dependent, there is requirement for add on sensors to carry out effective monitoring of EEZ. In fact, a complete EEZ surveillance system should be able to cater to all the facets of EEZ activity be it , terrorism, drug and human trafficking, piracy, smuggling, coastal security, Search and rescue, sea traffic control, pollution control, illegal fishing, illegal arms supply and exploitation of natural resources of solar, air, wave, minerals, oil and gas. For such an extensive requirement a cooperative, synergetic and system of systems approach between various agencies involved would be paramount.

The surveillance platforms would include the following:-

·                     Unmanned undersea vehicles, sonar arrays, patrol submarines, and other under water sensors.

·                     Remotely operated vehicles, unmanned surface vehicles, offshore platforms, sensors for activity monitoring, and patrol boats.

·                     Vessel Traffic Management System (VTMS), communication networks, control centers, pollution monitoring centers, surface and navigation radars, and electro-optic systems.

·                     Unmanned Ariel Vehicles, patrol aircraft, helicopters, aerostats, and sensors.

·                     Observation and communication satellites.

Coming to the deterrence capability in the EEZ, it has to be a non-military option during peacetime, which brings the discussion to deployment of Non Lethal Weapons (NLW) and the need to develop them for the EEZ environment. Conflicts in the EEZ are definitely going to be unconventional and it would be difficult to distinguish the adversary from the neutrals or friendly vessels. This may lead to conflicts where use of lethal weapons may not be permissible. Non-lethal weapons would provide tactical as well as strategic benefits to the EEZ protection force in the global commons. NLW would enable options for de-escalation of conflicts, avoid irretrievable consequences of using lethal options, and result in deterring activity without loss of lives and damage to material. NLWs have to be cost effective and easy to operate, as different varieties in varying numbers would be required. However to ensure a calibrated approach, across the spectrum of conflict, there is also a need for NLWs to be doctrinally integrated with the regular naval forces to enable them to tackle a developing situation in the EEZ.

Defense of Island Territories

The defence of the Island territories has to be structured as a mix of the Coastal and EEZ defence plans. The defence plan in case of the Islands should be an asymmetric and proactive approach to defence with defining it as a zone that comprises three segments of the defence environment:-

·                     Seaward- the area from the shore to the open ocean, which must be defended to thwart expeditionary forces at sea.

·                     Landward- from the shore to the area inland that can be supported and defended directly from the shore.

·                     From the Sea-  from the sea by warships and submarines in case, an incursion has already been made on an unprotected/ inadequately protected island. As well as drawing from offensive infrastructure at the islands in the vicinity.

The surveillance and defense components have to be drawn from the coastal and EEZ defense plans and augmented by use of warships and submarines at sea.

“Even if Chinese naval ships and submarines appear regularly in the Indian Ocean, so what?” he asked. “As the largest trading nation in the world, maritime security in the Indo-Pacific cannot be more important for China. The Chinese navy has to protect its overseas interests such as the safety of personnel and security of property and investment. Much of these are along the rim of the Indian Ocean.” – Zhou Bo, honorary fellow, Academy of Military Science, Beijing, Jul 2015

An Academic Case Study of Proactive Defense Infrastructure at Two Lakshadweep Islands (Minicoy and Suheli Par)

The Lakshadweep islands lie between 8° – 12 °3′ N latitude and 71°E – 74°E longitude about 225 to 450 km from the Coast of Kerala. There are 12 atolls, 3 reefs, and five submerged banks. In all, there are 36 Islands, with a total land area of 32 sq km; Lakshadweep islands have a lagoon area of 4200 sq km and 20,000 sq km of territorial waters. It provides a large swath of 4, 00,000 sq km of Exclusive Economic Zone.

Map 1: Proximity Analysis of Minicoy Island and Suheli Par with respect to SLOCs (Interactive map available at http://www.indrastra.com/2016/04/ANALYSIS-Proactive-Defense-Infrastructure-Planning-of-Indian-Island-Territories-Lakshadweep-Minicoy-Suheli-Par-002-04-2016-0015.html)

Minicoy

Minicoy is the southernmost island in the Lakshadweep. It lies between 8° 15’ to 8° 20’ N and 73° 01’ to 73° 05 E with an area of 4.4 sq km including the Viringli islet. Minicoy is separated from the rest of Lakshadweep by the nine-degree channel and from the Maldives by the 8° channel. It is an independent oceanic island that does not belong to either the Maldives or the Lakshadweep bank.

Map 2: Minicoy Island Naval Air Station: The Concept (Interactive map available at http://www.indrastra.com/2016/04/ANALYSIS-Proactive-Defense-Infrastructure-Planning-of-Indian-Island-Territories-Lakshadweep-Minicoy-Suheli-Par-002-04-2016-0015.html)

Suheli Par

It is located at 10°05′N 72°17′E / 10.083°N 72.283°E / 10.083; 72.283, 52 km to the SW of Kavaratti, 76 km to the south of Agatti, 139 km to the west of Kalpeni and 205 km to the NNW of Minicoy, with the broad Nine Degree Channel between them. There are two uninhabited islands, Valiyakara at the northern end with a lighthouse ARLHS LAK-015, and Cheriyakara on the southeastern side. These two islands have a long sandbank Suheli Pitti between them.

Map 3: Suheli Par Naval Air Station: The Concept (Interactive map available at http://www.indrastra.com/2016/04/ANALYSIS-Proactive-Defense-Infrastructure-Planning-of-Indian-Island-Territories-Lakshadweep-Minicoy-Suheli-Par-002-04-2016-0015.html)

As a purely academic exercise, a proactive defense infrastructure has been studied for placement on Minicoy and Suheli Par using GIS and other architectural tools available as open source. The primary study is based upon the following documents:

·                     Draft Approach Paper For The 12th Five Year Plan (2012‐2017), Earth System Science Organization Ministry of Earth Sciences

·                     Notification under section 3(1) and section 3(2)(v) of the environment (protection) act, 1986 and rule 5(3)(d) of the environment (protection) rules, 1986 declaring coastal stretches as coastal regulation zone (CRZ) and regulating activities in the CRZ. New Delhi, the 19th February 1991(as amended up to 3rd October 2001)

·                     Report of the Working Group on Improvement of Banking Services in the Union Territory of Lakshadweep by RBI, 12 May 2008

·                     Socioeconomic Dimensions And Action Plan For Conservation Of Coastal Resources Based On An Understanding Of Anthropogenic Threats. Minicoy Island – UT Of Lakshadweep Project Supervisor: Vineeta Hoon. Centre for Action Research on Environment Science & Society, Chennai. 2003.

·                     Report on Visit to Lakshadweep – a coral reef wetland included under National Wetland Conservation and Management Programme of the Ministry of Environment & Forests. 30th October – 1st November 2008

·                     Report on BSLLD (Urban) Pilot in Lakshdweep, 2014. Directorate of Planning and Statistics, Lakshadweep.

·                     CZMAs and Coastal Environments- Two Decades of Regulating Land Use Change on India’s Coastline. Center for Policy Research, 2015.

·                     Integrated Island Management Plan (IIMP) for Minicoy island.

·                     Lakshadweep Development Report

Criterion for selection of the island of Minicoy and Suheli par

Some of the criterion for selection of the islands of Minicoy and Suheli par are:

Minicoy and Suheli Par would synergistic-ally straddle the 9-degree channel, one of the most important SLOC not only for India, but also for the Indo-Pacific region and also for China. The security of the SLOC would be ensured pro-actively by developing the defense structure at both islands.

·                     Minicoy is inhabited and Suheli Par is not, thus providing two distinct classes of islands.

·                     Minicoy is geologically different from other islands in the Lakshadweep.

·                     Both have large lagoons.

·                     Both need to be developed for prosperity and connectivity of the region with main land.

·                     Both have poor connectivity with mainland.

·                     Both can provide security structures for EEZ and its regulation

·                     Main Features of Proactive Defense of Islands.

The main features of the conceptual structures include:

·                     Airstrips for use by tourists as well as defense.

·                     Small harbor facilities

·                     Submarine piers

·                     Mini/midget pens

·                     Staging facilities

·                     Coastal gun and missile batteries

·                     Mooring Buoys

·                     Off Shore ammunition storage

·                     Air defense capability

·                     Radar and underwater sensors

·                     Strategic Oil Storage Facility

·                     Command, Communications, and Control Center for Indian Navy

·                     Strategic Communication facility

·                     Storm Warning and Fisheries information center

·                     Ocean Surveillance stations and cabled Oceanic Information Observatories

·                     Floating sun power panels

·                     Offshore Desalination plants

·                     Facilities for Tourists

Linkages with MDA, ODA, and OICZ

It is important that any academic exercise for development of a proactive defense infrastructure of island territories consider concepts of Maritime Domain Awareness (MDA), Oceanic Domain Awareness (ODA), and Ocean Information Consciousness Zones (OICZ). MDA focuses upon the maritime security environment specific to naval operations; the ODA focuses upon the overarching oceanic environment. Both are technology intensive and require sophisticated sensors and computational capabilities.MDA has tactical, regional, and strategic components whereas the ODA is strategic knowledge based architecture. Both require elaborate data and information fusing interface with myriad of interconnected agencies. The MDA primarily needing vast inputs from commercial, intelligence and security agencies and the ODA from advanced research, academic and scientific communities. The ODA is conceptualized as a comprehensive 3D+ knowledge zone up to India’s EEZ, the OICZ on the other hand is a collaborative approach at sharing oceanic information, processing it as required and archiving it for use at a later date. ODA can be established by a country individually, but OICZ requires transfer / sharing of scientific knowledge and technology between nations. Benefits of ODA accrue to the nation whereas OICZ would empower the region. Both are strategic in nature.

The usage of “geo-spatial tools” behind the “Conceptual Proactive Defense Infrastructure Plan” for Minicoy and Suheli Par

In the field of geopolitical studies, spatial analysis driven by various geographic information system (GIS) technologies helps strategic experts in computing required and desired solutions. In this analysis of Minicoy Island and Suheli Par, Google My Map API is used to perform a variety of geo-spatial calculations by using a set of easy to use function calls in the data step. In layman’s term, a layer-by-layer computational analysis of geographic patterns to finding optimum routes, site selection, and advanced predictive modeling to substantiate this analysis has been carried out. These concepts are formulated by considering the land reclamation factors and available details of Integrated Island Management Plan of Government of India (GoI) for Lakshadweep Islands. However, there are certain limitations associated with this analysis with respect to bathymetric data, which has not been considered for evaluation purpose due to lack of availability of such data in open/public domain. Further, these interactive custom maps can be easily exported into KMZ format and can also be embedded seamlessly with other websites for further distribution.

Considering all the factors discussed hitherto the maps are embedded in this article, depicting the proactive defense infrastructure plan for Minicoy and Suheli Par have been developed.

Conclusion

India’s EEZ and island territories face threats of disruption of energy supplies, piracy, and acts of terrorism, in addition to the fact that other nations are keen to poach in to the fisheries and seabed wealth. The security of the EEZ and island territories is therefore a matter of India’s national interest and need exists for boosting the surveillance and augmenting security arrangements of EEZ’s and island territories. Even though, an ambitious plan for coastal security and maritime domain awareness has been put in place, it needs to be further strengthened and stitched together so that the security of EEZ and Island territories functions as a comprehensive entity with synergies across the various agencies involved.

The academic exercise undertaken above in respect of Minicoy and Suheli Par islands demonstrates that it is feasible to provide effective SLOC protection, achieve maritime dominance in a limited area of interest, provide support to second strike capability and utilize space and oceans for surveillance, intelligence, science, and communications purposes.

Time for a proactive approach to plan the defense of EEZ and island territories is now!

 

About The Authors:

 

Rear Admiral Dr S. Kulshrestha: The author RADM Dr. S. Kulshrestha (Retd.), INDIAN NAVY, holds expertise in quality assurance of naval armament and ammunition. He is an alumnus of the NDC and a PhD from JNU. He superannuated from the post of Dir General Naval Armament Inspection in 2011. He is unaffiliated and writes in defence journals on issues related to Armament technology and indigenisation.

 

Rahul Guhathakurta: He is the founder of IndraStra Global and a seasoned supply chain management professional with 8+ years experience in trade route optimization and planning through various GIS applications.

Cite this Article:

Kulshrestha, S, Guhathakurta, R “ANALYSIS | Proactive Defense Infrastructure Planning of Indian Island Territories – A Conceptual Case Study of Lakshadweep (Minicoy and Suheri Pal Islands)” IndraStra Global 002, no. 04 (2015): 0015. http://www.indrastra.com/2016/04/ANALYSIS-Proactive-Defense-Infrastructure-Planning-of-Indian-Island-Territories-Lakshadweep-Minicoy-Suheli-Par-002-04-2016-0015.html |ISSN 2381-3652|

 

Tonga and the Third Island Chain

( Published in IndraStra Global on 25 Feb 2016, ISSN 2381-3652 )

“The ongoing disputes in the East China Sea and the South China Sea mean that Japan’s top foreign policy priority must be to expand the country’s strategic horizons. Japan is a mature maritime democracy and choice of close partners should reflect that fact. I envisage a strategy whereby Australia, India, Japan, and the US State of Hawaii form a diamond to safeguard the maritime commons starting from the Indian Ocean Region to the Western Pacific. I am prepared to invest the greatest possible extent, Japan’s capabilities in the security diamond”

Shinzo Abe, 2013

Interestingly, John Foster Dulles of the US of A propounded the Island Chain Concept, comprising of three island chains, in 1951 for strategic containment of USSR and China. The key component of the First Island Chain was Taiwan (it was thereafter christened as one of the Unsinkable Aircraft Carriers); it extended from northern Philippines & Borneo, up to Kuril islands. The second line of defense was from Mariana Island to Islands of Japan. The Third Chain’s key component was Hawaii; it began at Aleutians and ended in Oceania. Now that the breakdown of USSR has taken place, the Chinese believe that this concept would be used to contain China.

General Liu Huaqing had articulated a three-tier program for modernizing the PLAN (commonly referred to as Chinese Navy),according to which the Chinese Navy is proceeding to fast pace its modernization efforts. The program essentially comprises of three time lines, namely:

Year 2020- Acquire capability to exert sea control up to the First Island Chain i.e. bracketing the South China Sea and the East China Sea.

Year 2020- The sea control capability would be extended to the Second Island Chain, which amounts to bracketing the Philippines Sea.

Year 2050- The capabilities would extend to operating Carrier battle groups globally.

The phenomenal economic growth followed by upgrading of military capabilities of PLA and the subsequent claims on islands in the South China Sea, probably led Mr. Shizo Abe, the prime minister of Japan, to articulate the “Asian Security Diamond” in 2013. It called upon India, Australia, and Hawaii (US) to form a strategic coalition for safeguarding the maritime commons comprising the Indian Ocean and the Western Pacific. The Japanese Prime minister has also approached France and United Kingdom to join this Asian Security Diamond keeping in view the significant strategic presence of these two countries in the IOR and the Western Pacific.

The Polynesian Link in the Third Island Chain

The third Island Chain as espoused by Dulles; from the Aleutians to Oceania with Hawaii as a key component; has started to assume relevance with an assertive China militarizing disputed islands. New Zealand –Tonga – Hawaii link within this chain; could play a significant role at least as far as Maritime Domain Awareness (MDA) is concerned. Whereas, New Zealand and Hawaii may not need any benign assistance, Tonga, with its 177 islands spread over an area of ~700,000 sq km in southern Pacific Ocean, is a different story.

Currently, in the maritime arena, Tonga is grappling with security of its extensive coastline as well as policing of its EEZ of 676,401 sq km. Its remote location, over 2,330 km from New Zealand and over 5000 km from Hawaii make it a fertile region for transnational crime. Tonga has insufficient physical and electronic monitoring resources to remain updated about real time situation in its vast area and is severely constrained as far as MDA is concerned. Tonga with its outlying islands is susceptible to gun running, narcotics, human trafficking and other criminal activities. In addition, unauthorized exploitation of its fisheries and marine wealth in its coastal waters as well as in its EEZ has direct impact on its national economy and security. As regards applicability of MDA to Tonga it would be prudent to take a cue from the definition and scope of MDA, as has been articulated by the US government vide their document National Security Presidential Directive 41, 2004:-

Maritime Domain Awareness is “the effective understanding of anything associated with the global maritime environment that could impact the security, safety, economy or environment of U.S. This is accomplished through the integration of intelligence, surveillance, observation, and navigation systems into one common operating picture (COP) that is accessible throughout the U.S. Government.

Unlike traditional naval operations, it is apparent that the goal of MDA is far more than simply looking for potential maritime enemies poised to attack Tonga. The implications of “Anything associated” with the maritime environment that can affect the security, safety, economy, or environment go far beyond a classic maritime threat. As per the US interpretation, these include smuggling of people or dangerous cargoes, piracy, proliferation of Weapons of Mass Destruction (WMD), identification and protection of critical maritime infrastructure, oil spills, weather, and environmental concerns among other events. What Tonga needs today is a robust MDA along with a rapid air & sea transportation capability.

An important factor that has to be considered while discussing the Third Island Chain is that Tonga is being aggressively wooed by China, even though there are only about 300 Chinese residents as per some estimates. 

India has been participating in bilateral and multilateral strategic dialogues in the region including those involving Japan, Australia, and the US and the Indian Navy has participated in various naval exercises. However, India has not joined any group, which directly aims at containment of China.

India maintains cordial relations with nations in the Pacific; however, Tonga and other smaller nations in the South Pacific Ocean aspire for more attention from India. India could assist Tonga, benignly, in setting up of its MDA infrastructure. This would not only enhance the potency of the Polynesian Island link in the Third Island Chain, but also strengthen Tonga’s maritime security.

 

“The Strategic Importance of Tonga for India”

Kulshrestha, Sanatan. “FEATURED | The Strategic Importance of Tonga for India” IndraStra Global 02, no. 02 (2016): 0031. http://www.indrastra.com/2016/02/FEATURED-Strategic-Importance-of-Tonga-for-India-002-02-2016-0031.html

| ISSN 2381-3652 | https://dx.doi.org/10.6084/m9.figshare.2074561

 

Tonga is an archipelago in the South Pacific Ocean, lying about 5,060 km Southeast of Hawaii. It comprises of 177 islands in the central Pacific Ocean covering ~360,700 sq km of ocean with a land area of 699 sq km. The main island groups are Tongatupu, Haíapai, and Vavaíua. It is to the credit of the Kingdom of Tonga that, it is the only monarchy in South Pacific that has never been colonized. The capital of Tonga is Nuku’alofa, which lies on the Tongatupu island chain.

China and Tonga

It is understood that pro democracy supporters started the riots in the central business district in Nuku’alofa on 16 November 2006. Since a large number of shops destroyed were owned by Chinese origin Tongans, China provided a concessional loan of $118 mn to Tonga. This was followed by military supplies worth Euro 340,000 in 2008.

Two Chinese warships namely a missile frigate “Mianyang” and a training ship “Zhenghe” visited Nukualofa in September 2010. A new Chinese- Tongan bank was also set up in 2013. China also gifted a $15 mn commercial Xian MA60 aircraft to Tonga.

This was followed by the visit of a Chinese Hospital ship “Peace Ark” on a “Harmonious Mission 2014” in Aug 2014. This ship provided consultations, medicines and even carried out complex surgeries for Tongans. As per, commanding officer of the “Harmonious Mission – 2014” Rear Admiral Shen Hao, “The purpose of this tour to Tonga, with the mission of providing medical services, is to carry forward the international humanitarian spirit, strengthen exchanges between the two militaries, and promote the view of harmony”.

On the other hand, the Chinese residents have been at the receiving end of the racial attacks. It is said that out of the 3000 to 4000 of them, only about 300 remain, the rest having fled Tonga.

Nevertheless, China continues to make overtures to Tonga.

 

India – Tonga Relations 

Tonga and India have very cordial relationship.

In July 2006, Indian naval ship – INS ‘Tabar’ paid a goodwill visit to Tonga. Late King George Tuopou V visited India in September 2009 on a private visit. Tonga has been provided 15 training slots for 2015-16 under ITEC programme. A small number of Tongan Defence Service personnel have been availing defence training in various training institutions in India. As per the MEA briefing notes, in 2007, India has given a grant-aid of US$ 100,000/- each for construction of access road from Wharf to Hunga village and up-gradation of jetty in Hunga. India has also provided grant-aid of US$ 3,00,000 for Tsunami Alert System in July 2014 and approved grant-aid of US$ 1,15,000 for Project Proposal “Upgrade to the Office of the Public Service Commission ICT Infrastructure” in October 2014.

Tonga delegation was led by the Prime Minister Lord Tu’ivakano, when Prime Minister Shri Narendra Modi hosted the India-Pacific Island Countries Forum Summit in Suva (Fiji) during the visit on 19 November 2014 with the participation of 14 Pacific countries. Some of the announcements made during the summit with respect to Pacific countries (including Tonga) included;

-Setting up of a Special Adaptation Fund of $ 1 million,

– Development of Pan Pacific Islands Project for telemedicine and tele-education,

-Indian Visa on arrival for Pacific Island Countries .Deputation of ITEC experts to Pacific Island countries, including in the areas of agriculture, healthcare, and IT,

-Cooperation in the use of Space technology applications for improving the quality of life of people and communications,

-Explore possibilities of sharing data for monitoring climate change, disaster risk reduction, and management and resource management,

-Undertake joint research in traditional medicine; developing healthcare facilities for the benefit of people in the region.

Needless to say, that International Day of Yoga was celebrated in Tonga on 21 June 2015.

EEZ Resources

Tonga has an EEZ of 676,401 sq Km.

The seabed mineral potential of Tonga is attracting a large number of countries who intend to carry out exploration to assess the mining potential of the ‘sea floor massive sulphide’ deposits, which could yield significant amount of metals like gold, silver, copper and zinc.

Tonga is the first country in the world to promulgate Seabed Minerals Act in 2014 to manage seabed mineral activities in its territorial waters as well as its EEZ. The Act emphasizes the protection and preservation of the marine environment as well as the need to balance economic development for the people of Tonga against conservation of the biodiversity of the oceans. India can gain from this in framing its own deep sea mining regulations.

Way Ahead

It appears that Tongans believe India should look at South Pacific Ocean as a strategic interlink to the Indian Ocean and not as a peripheral appendage. Tongans apparently resent being seen via Fiji and Australia in the strategic scheme of power projection. They would prefer to be dealt with as an independent strategic partner along with other smaller nations in the South Pacific Ocean.

India has put in place a comprehensive framework for future cooperation in the South Pacific, the need now is to accelerate the collaboration in the areas of communications, climate change monitoring, fisheries, ocean sciences and technology.

 

It has been nearly 35 years since a Indian Prime Minister visited Tonga probably it is time now to take the relationship with Tonga to a higher echelon and also peg smaller South Pacific Nations as strategic allies.

Dimensions of Submarine Threat in the Littorals –A Perspective

(Published :  “FEATURED | Dimensions of Submarine Threat in the Littorals –A Perspective by RADM Dr. S. Kulshrestha (Retd.), INDIAN NAVY.” IndraStra Global 01, no. 11 (2015): 0408. ISSN 2381-3652,)

Dimensions of Submarine Threat in the Littorals –A Perspective

Abstract

The littorals present a very complex environment in which the platform, weapon and the target interplay is dependent upon the real time and archival understanding of the medium parameters. The article aims to provide a perspective into the extent of the littoral underwater submarine threat and the constraints which hamper its successful prosecution. It also brings out the fact that the Blue water Navy would have to enhance its environmental understanding and modify its approach towards anti submarine operations to reduce likely attritions during littoral conflicts. The article brings out the imperative need to dove tail fundamental environmental research and Indian Naval requirements to tackle the threats in littorals.

 

 “…the very shallow water (VSW) region is a critical point for our offensive forces and can easily, quickly and cheaply be exploited by the enemy. The magnitude of the current deficiency in reconnaissance and neutralization in these regions and the impact on amphibious assault operations were demonstrated during Operation Desert Storm.”

Maj. Gen. Edward J. Hanlon Jr., Director of Expeditionary Warfare, Sea Power, May 1997

A blue water navy’s ability to execute manoeuvre in littorals is severely compromised due to confined sea spaces, lesser depths, heavy traffic, threats due to lurking quiet diesel submarines, coastal missile batteries, swarms of armed boats, deployed mines and threats from the air. The definition of a littoral region encompasses waters close to the shores as well as greater than 50 nm at sea. The Indian Navy, like all the other blue water navies has not been fundamentally positioned for close combat encounters. It is has generally been expected that sea warfare would have standoff distances of at least 50/60 km if not more between adversaries   (outside range of torpedoes and guns). If Carrier groups and anti ship cruise missile (ASCM) cruisers are deployed, the standoff can be up to a couple of hundred kms (ASCM and Air craft limits). However today littorals present an inevitable close quarter engagement situation with CSG remaining well clear of coastal missile batteries and aircraft operating from shore based airfields. In case of countries like China, the CSG may even remain a thousand km away to save itself from a barrage of carrier killer missile like the Don Feng 21 D with a range of over 2000 kms[i].

 Thus littorals have withered away the advantage of the CSG and the big ships as manoeuvring in close quarters is not feasible any more. The lighter ships would have to fight in the littorals with a much larger risk of attrition from the diesel electric submarine, mines, swarm of boats and shore based assets. The blue waters represent large swaths of sea with adequate depths for operations, and much less uncertainties in the sensor – weapon environment. The littorals are confined zones with reducing depths and a very adverse sensor environment. This has drastically compressed reaction times leading to requirements of great agility for the men of war.

 A worthy defender is always considered to be in an advantageous position in the littorals, fundamentally due to the intrinsic knowledge and experience in operating in his home environment. It constitutes what the US DOD calls an access denial area likely to impinge upon the US national interests in the Vision 2004 document this has been articulated as “To win on this 21st Century battlefield, the U.S. Navy must be able to dominate the littorals, being out and about, ready to strike on a moment’s notice, anywhere, anytime[ii] The Indian Navy has in all probability identified areas in Arabian Sea, Bay of Bengal and Indian Ocean where it may have to engage in littoral conflicts either singly or in concert with coalition of navies, should such a contingency arise. On the other hand 26/11 had opened the coasts to attack by terrorists and the Government of India has initiated efforts to tighten its coastal security. As to the plans of defending own littorals against a formidable expeditionary force, nothing much is known in the open domain, in all likely hood it remains a simplistic defensive model due to insufficient focus and the inevitable funding. The fact remains that ocean rim state navies today are focussing more on littoral capability than building a blue water navy. Indian Navy has to consider the littoral capability seriously whilst modernising and achieve a balance, depending upon its current and future threat perceptions. The blue water force has to have an embedded littoral component force so that the IN can operate in littorals far away from her home ports.

 The major under water threats comprise of mines and undetected diesel submarines. However as far as mines are concerned, they are every coastal country’s weapon of choice as they are economic, easy to lay but very hard to detect and sweep. They are the psycho sentinels of defence, since unless their existence is proved it has to be assumed that waters are mine infested and have to be swept before warships can attempt a foray in to the littorals[iii]. The clearing of mines for safe passage is a very time consuming and intensive exercise which introduces significant delays in any operation, while taking away element of surprise and granting time to adversary to plan tactics. Therefore in case delays are not acceptable, littoral operations would have to cater for some attrition on account of mines as well as navigation hazards posed due to sunken or damaged ships on the sea route.

 The aim of this article is to derive a perspective in to the fundamental dimensions of the littoral medium, platform and weapon with respect to the underwater submarine threat which constitutes the most potent hazard to a powerful navy.

Operating Littoral Environment

The littorals comprise of different types of zones in which a Navy has to operate. These include continental shelf, surf zones, straits and archipelagos, harbours and estuaries. The main thrust of naval operations hinges upon the underwater acoustics (sonic ray plots) which provide not so accurate measure of effectiveness of Sonars. In the continental shelf not much is known about the tactical usage of bioluminescence, plankton or suspended particles and other non acoustic environmental information. Quantifiable effect on performance of different sensors and weapons under various conditions is also not available to the Commander to help him deploy them optimally. Further predictions about conditions for naval operations in continental shelf areas of interest are at best sketchy and no reliable database exists to provide correlation between various environmental conditions that may be encountered. In the surf zone region (within 10 m depth line till the beach), temporal and spatial environmental data is required for effective planning of naval operations however, there are large variations in acoustic data over short and long term. Archipelagos and straits are subject to; swift changes in currents and water masses due to restricted topography, dense shipping, fishing and human traffic which complicate planning. Most of the harbours are estuarine in nature and present a highly intricate and variable environment (tides, currents, wave amplitudes etc) warranting a holistic approach to understand the same.

Thus it can be seen that carrying out missions in littorals also involve other aspects of environment in addition to the uncertain under water acoustics which have a direct bearing on the missions. These aspects include real time and archival data bases of; meteorological surface conditions required for efficient operation of IR, Electro optical, and electromagnetic sensor and weapon systems; under water topography, accurate bathymetry, bottom composition, and detailed assessment of oceanographic water column environment for under water sensors and weapons.

The availability of overarching oceanic environmental knowledge would provide insight into enemy submarine operating/hiding areas, location of mines and underwater sea ward defences. Currently the Indian Navy does not have the capability to carry out exhaustive littoral environmental scanning let alone field any sensor or weapon system that can adapt to the dynamic littoral environment and carry out missions with conviction. In fact, even for own littoral zones this type of information is not available which would enable effective deployment of static or dynamic defences.

Effect of Environment on Propagation of Sound in Shallow Waters

A brief description of the acoustic environment in shallow waters is relevant at this stage. The main factor affecting acoustic propagation in deep oceans is the increase in pressure of water column with increasing depth as the temperature remains nearly constant. The speed of sound increases with depth and the sound waves finally hit the bottom and reflect upwards. In shallow waters the rays tend to refract, that is bend upward without going to the bottom. This phenomenon takes place when the refracted sound velocity equals the sound velocity emitted by the source. On reaching the region of the source they again refract towards the depths and this process continues.[iv] In very shallow waters the sound rays are reflected upwards from the bottom. The amount of sound energy reflected upwards depends directly on the nature of the sea bottom. Harder the sea bottom better is the reflection and vice versa.[1]In shallow waters it is clear that the sound speed depends mainly on the temperature which in turn depends upon the amount incident solar radiation, wind speeds, wave action etc.

It can therefore be inferred that the acoustic signal in shallow waters is dependent upon factors like temperature, sea surface, nature of sea bottom, waves and tides, in-homogeneities and moving water masses amongst others. These present a very complex effect on the acoustic signal by altering its amplitude, frequency, and correlation properties. Further, multipath reflections from the bottom, as well as surface put a severe constraint on signal processing. The understanding of the underwater sound propagation remains unsatisfactory to this day. The complex interplay of acoustics, oceanography, marine geophysics, and electronics has bewildered Navies searching for submarines or mines in the shallow waters. Two fundamental issues that of beam forming and lining up the sonar are discussed in the subsequent paragraphs.

 Zurk et al[v] in their paper “Robust Adaptive Processing in Littoral Regions with Environmental Uncertainty” have addressed a real time problem in underwater, i.e. the dynamic nature of the sensor, target, medium and the interfering element’s geometry. The moving sensor, target and medium causes difficulties for adaptive beam former sonars which are designed to assume a certain level of stationary conduct over a specified time period . The time period required is dependent upon the number of elements in the array and the coherent integration time. Since large arrays give much better resolution  they have a larger number of elements, leading to a moving source transiting more beams during a given observation period. If target is in motion, the target energy is distributed over many beams weakening the signal and degrading the accuracy of targets location. The arrays with larger volumes thus have larger probability of motion losses. Some techniques to reduce these errors include sub-aperture processing, time-varying pre-filtering of the data, and reduced-dimension processing.

 Naval sonar systems have become more and more complex over time and require expert operators. Optimising sonar line ups has become essential in a littoral environment where the acoustic properties change rapidly over time and space domains. With the sonar automatically determining the optimal line up based upon desired inputs from the operator and the sensor feeds of operating environment, the sonar operator would be able to give his full attention to the task of detection, identification and classification of the targets. The necessity of   autonomous environmentally adaptive sonar control is imperative in littorals because of the tremendously large number of objects which may be present below the water line and skills of the operator would be put to test to sieve out the elusive submarines.

 Warren L.J. Fox et al. “Environmental Adaptive Sonar Control in a Tactical Setting.”[vi]  Have addressed the issue of sonar line up and have recommended neural networks for generating acoustic model simulations required.  Control schemes for Sonars are of two types, namely acoustic model-based and rule-based. Model-based controllers embed an acoustic model in the real-time controller. In acoustic model based controllers, acoustic performance predictions are inputted in to the controller, based upon available estimates of the existing environment, which in turn, gives the feasible sonar line ups. The choice of line up depends upon the chosen parameters for the operation. In the rule based controller, a generic set of operating environmental conditions are defined by the sonar and acoustic experts, which are then subjected to acoustic modelling and the sonar equations to generate the best possible line up. The existing environmental conditions would have to be assessed in real time prior to selection of the best line up available as per design. This approach however may not account for the large number of varying environments that are the hallmark of different littorals, and lead to discrepancies in results. Thus it appears that acoustic model based controller may be a better choice, as it largely takes care of the prevailing conditions at sea, than the rule based one, but it requires much more computational power and time to assess the situation prior to lining up the sonars. Warren L.J. Fox et al[vii] have recommended a method of training artificial neural networks for use in a sonar controller for ships as well as unmanned under water vehicles, to emulate the input/output relations of a computationally intensive acoustic model. Artificial neural networks are much faster and utilise far lesser computational capacity.

 The Submarine Threat in Littorals

 The shallow waters pose a serious problem for under water acoustics, they remain unfriendly to current sensors like towed arrays, variable depth sonars and air dropped sonobuoys due to depth limitations, deployment of torpedoes ( both ship and air launched) and depth charges. Shallow waters with close proximity to land also pose difficulties for radars and magnetic anomaly detectors thus providing a relatively safe operating area for small diesel electric submarines. Detection of surface craft by submarines in passive sonar mode is much easier because of their higher acoustic signatures. The surface ships would perforce resort to active sonar transmission as their passive capabilities are degraded in littorals. This in turn makes them more acoustically visible.

 The littoral submarine however has a limited period of quiet operation under water of a couple of days, as it has to either surface or snorkel for recharging its batteries by running its diesel generator sets. The battery capacity drainage is directly proportional to the running speeds, faster the submarine travels quicker is the discharge and hence larger is the discretion rate, which is the charging time required. Interestingly it is this discretion rate, which allows the submarine to be vulnerable to detection. During charging, the radiated noise of diesel generators, the IR signatures and the likely visibility of the snorkel make it susceptible to observation by trained crews. The submarine therefore prefers to lie in wait, barely moving or just sitting at the bottom for the prey to arrive.

 Development of Air independent propulsion technology (AIP) has enhanced the submerged time of submarines by a great extent (from a couple of days to about two weeks). The AIP is dependent upon availability of oxygen on board. The AIP while granting more submerged time to a submarine unfortunately provides the same level of acoustic signature as a snorkelling submarine, thus making it prone to detection.[viii]

 Fuel cell technology has been successfully interfaced with AIP and Siemens 30-50 KW fuel cell units have been fitted in the German Type 212A submarines since 2009, it is said to be much quieter , provides higher speeds and greater submerged time.

 The weapons for the submarines include mines, torpedoes and the submarine launched missiles. The technology ingress in computing, signal processing, hull design and materials have benefitted the submarine, its sensors, weapons and fire control systems. These advances coupled with vagaries of the acoustics in shallow waters have made the diesel submarine a very potent and lethal platform. While many countries have AIP submarines, of interest to India is the acquisition of these submarines by Pakistan[ix] since the Indian Navy does not operate an AIP submarine. The Indian Navy today even lacks the adequate numbers of diesel electric submarines required.

 The Unmanned Submarine (Unmanned Underwater Vehicle; UUV)

 An UUV generally is a machine that uses a propulsion system to transit through the water. It can manoeuvre in three dimensions (azimuth plane and depth), and control its speed by the use of sophisticated computerised systems onboard the vehicle itself. The term Unmanned underwater vehicle includes, remotely operated vehicles, Paravane, sea gliders and autonomous underwater vehicles.

It can be pre programmed to adhere to course, speed and depths as desired by the operator, at a remote location and carry out specific tasks utilising a bank of sensors on the UUV. The data collection can be both time and space based and is referenced with respect to coordinates of the place of operation. It can operate under most environmental conditions and because of this, they are used for accurate bathymetric survey and also for sea floor mapping prior to commencing construction of subsea structures. The Navies use them for detecting enemy submarines, mines, ISR and area monitoring purposes etc.

 The UUVs carry out their routine tasks unattended, meaning there by that once deployed the operator is relatively free to attend to other tasks as the UUV reaches its designated area of operation and starts carrying out its mission, be it survey, search, or surveillance.

Compared with many other systems, UUVs are relatively straightforward, with fewer interoperable systems and component parts, facilitating reverse-engineering of any components that might be restricted in the commercial market place. All of these factors, however also increase the likelihood that even a low tech littoral adversary could easily field offensive, autonomous UUVs, this in turn leads to seeking rapid developments in UUVs by major navies.

 UUVs are on the verge of three developments which would accelerate their induction into modern navies. First is the arming of UUVs to create Unmanned Combat Undersea Vehicles (UCUVs). This is virtually accomplished with UUV designs incorporating light weight torpedoes as weapons of choice. Heavier UUVs are contemplating missile launchers and/or heavy weight torpedoes as weapons in their kitty. However these appear to be interim measures, as a new class of weapons specific to unmanned vehicles are already under advanced development. These include much smaller and lighter missiles, torpedoes and guns firing super-cavitating ammunition.

 A second potential technology development is radically extended operational ranges for these armed UUVs. Already, the developed countries have invested in programs to create long-range underwater “sea gliders” to conduct long-range Intelligence Preparation of the Operational Environment (IPOE) missions[x]. While the technologies enabling the “sea glider” approach probably do not provide the flexibility and propulsion power to enable armed UUVs, such programs will significantly advance the state of UUV navigation and communications technologies. Leveraging these advancements, other nascent technologies such as Air-independent-propulsion (AIP) or Fuel Cell propulsion or perhaps Aluminium/Vortex Combustors, could provide the propulsion power necessary to effectively deploy armed UUVs even well outside of the operating area limitations of conventionally powered submarines.

 Finally, “autonomy” for these armed, long range UUVs will allow them the flexibility to conduct operations far away from the home port. Artificial intelligence (AI) based autonomous control systems are being developed at a frenetic pace, fuelled principally by demand for improved UAVs. Such developments will directly contribute to UUV autonomy, but in fact, are not actually necessary for the majority of “sea denial” missions envisioned for UCUVs. Even with current state of missile seeker technology, UCUVs would only need enough autonomy to navigate to a known area of operations (a port, choke point, or coastal location) and launch, and the missile would do the rest. For more complex missions, weapons could be guided by an on-site observer, for instance on a trawler or even ashore, in real-time or near-real-time. In short, there are a remarkably small number of “hard” technology barriers standing in the way of the long range, autonomous, armed and capable UUVs. There is little reason to think that this capability will be limited to high end, navies only. Thus networked operations of unmanned vehicles with PGMs are going to become the lethal weapon combo for the future.

 A request for information has been floated by the Indian Navy to meet its requirement for at least 10 autonomous underwater vehicles (AUVs). These AUVs are to be developed and productionised within four years of contract finalisation. The Navy has opted for a special category MAKE for the armed forces under the Indian Defence Procurement Procedure for high technology complex systems designed, developed and produced indigenously .Modular payload capability of the AUVs have been asked for, where in  payloads like underwater cameras for surveillance reconnaissance and high definition sonars can be mounted.

  UUVs in various configurations and roles such as communication and navigation nodes, environmental sensors in real time or lie in wait weapon carriers are going to be the choice platform in the littorals. These are expendable if required, economically viable, and offer flexibility in design as being unmanned they can have much lesser degree of safeties.

 Weapons

 “The Navy’s defensive MCM capabilities in deep water are considered fair today, but they are still very poor in very shallow water (VSW) – not much better in fact than they were some 50 years ago.” [xi]

Milan Vego.

 The naval mine is a relatively cheap, easy to employ, highly effective weapon that affords weaker navies the ability to oppose larger, more technologically advanced adversaries. The mere existence of mines poses enough psychological threat to practically stop maritime operations, and thus deny access to a desired area at sea. Further they can be used as barricades to deter amphibious forces and cause delays in any naval operation in the littoral. Thus, a mine doesn’t have to actually explode to achieve its mission of access denial. North Koreans were able to deter and delay arrival of U.S Marines sufficiently to escape safely, by mining Wonsan Harbour in October of 1950 with about 3000 mines.

 Mines are classified based upon their depth of operation, methods of deployment or the way they are actuated. The versatility of deployment can be gauged by the fact that mines can be laid by majority of surface craft, submarines, crafts of opportunity and aircrafts/ helicopters. Mines have been used by countries and non state actors alike with dangerous effects and thus continue to pose a credible threat to Navies as well as merchant marine.

   Types of mines are based upon the depth at which they are deployed. As per the  21ST Century U.S. Navy Mine Warfare document[xii] the underwater battle space has been divided into five depth zones of, Deep Water (deeper than 300 feet), Shallow Water (40-300 feet), Very Shallow Water (10-40 feet), the Surf Zone (from the beach to 10 feet) and the Craft Landing Zone (the actual beach). Mines are of three basic types namely, floating or drifting mines, moored or buoyant mines and bottom or ground mines.

  Drifting mines float on surface and are difficult to detect and identify because of factors like visibility, sea state and marine growth etc. Moored mines are tethered mines using anchoring cables to adjust their depths. These can be contact or influenced based mines. Bottom mines are most difficult to locate as they can also get buried under sediment layer which cannot be penetrated by normal sonars.

Mines can be actuated by contact, influence, and by remote or a combination thereof. With modular Target Detection Device (TDD) upgrade kits, the older contact mines can be easily upgraded to actuate by influence methods. The influence needed for actuation could be pressure, acoustic or magnetic or a desired combination. In addition ship counters and anti mine counter systems are also being incorporated in to the mines to make them much more potent and lethal.

Mine technology has kept a step ahead of the ships designs for low acoustic and magnetic signatures, and many countries are engaged in development and production of naval mines. Non metallic casings, anechoic coatings, modern electronics and finally reasonable costs have made mines a choice weapon for poor and rich nations alike. It is estimated that about 20 countries export mines while about 30 produce them. Sweden Russia, China and Italy are the leading exporters. Mine MN 103 Manta from SEI SpA of Italy is one of the most exported mines in the world with about 5,000 Mantas in inventories throughout the world.

 It is estimated that China has in its inventory about a hundred thousand mines of various vintages and from the WWI simple moored contact mines to modern rocket-propelled mines with advanced electronic systems for detection and signal processing. [xiii]

 The submarine torpedoes are an embodiment of a synergetic mix of engineering disciplines ranging from mechanics, hydraulics, electronics, acoustics, explosive chemistry etc. to sophisticated software and computing. Their development has therefore involved differences in propulsion designs from steam engines to electrical motors to thermal engines and rocket motors. The control and guidance systems have also evolved from simplistic mechanical/ hydraulic to sophisticated electronic and onboard computer based systems. The guidance has further diversified in to self guided and wire guided varieties. The simple straight runners have given way to active passive homers and wake homers to attack moving targets. The warheads have moved from minol based to TNT/RDX/Al and now on to insensitive explosives with a life of over 40 years. The warheads over the years have been fitted with simple contact exploders, to acoustic influence and magnetic influence proximity fuses. The diameter of the torpedoes has ranged from 324mm to 483mm to 650mm, and before settling for internationally acceptable 533mm. Interestingly with the advent of microelectronics space has never been a constraint for the torpedo and electronic/ software updates always get comfortably accommodated in the torpedo.

A major technical feature that sets apart a torpedo from a missile is the fact that a practice torpedo is recoverable for reuse; this enables excellent weapon capability assessment, crew training as well as analysis of vital firing geometry. Some of the noteworthy heavy weight torpedoes are the American Mk 48 Adcap, the Italian Blackshark, the German DM2A4 and the Russian 53-65 K oxygen torpedo.

The torpedo has been evolving with leaps in technology but some characteristics towards which the heavy weight torpedoes are headed include; faster speeds (~over 60 Kts), Quieter signature, better reliability in detection, enhanced ranges of operation (>100 Kms),smarter electronics, and increased lethality.

The cruise missile owes it origins to the German V1/V2 rockets and mainly to the fact that manned aircraft missions had proved to be very expensive during the wars (loss of trained fighter pilots as well as expensive aircraft). Unfortunately the cruise missile development until the 1970s resulted only in unreliable and inaccurate outcomes which were not acceptable to the armed forces. Cruise missiles overcame their inherent technical difficulties and owe their tremendous success and popularity to some of the technological advances in the fields of; firstly, propulsion, namely small turbofan jet engines which resulted in smaller and lighter airframes; secondly miniaturisation of electronic components, which led to much smaller on board computers thus to much better guidance and control abilities and finally,  high density fuels and much better explosives and smaller warheads.

  Cruise missiles have become weapons of choice at sea because of their ability to fly close to the sea surface at very high speeds (sub-sonic/supersonic), formidable wave point programming and lethal explosive capabilities. These make the missiles very difficult to detect and counter at sea. Some of the naval cruise missiles worth mentioning are the Brahmos, the Tomahawk, the Club and the Exocet family.

It appears that the trend towards hypersonic scramjet cruise missiles will continue to gather momentum and such missiles could be in the naval inventories by 2020. Coupled with hypersonic missiles would be real time target data updating and guidance by extremely fast computers and satellite based systems. The kinetic energy of hypersonic cruise missiles would be a lethality multiplier against targets at sea and therefore such a missile would be a formidable weapon without a credible countermeasure as on date. The costs continue to increase with new developments; however maintenance requirements appear to be reducing with canisterised missiles.

As Far as weapons are concerned the Indian Navy has a fairly reliable capability in mines, torpedoes and cruise missiles, however the numbers appear deficient for the defensive role in own littorals.

The submarines today can launch such missiles from their torpedo tubes or from vertical launchers which can also be retrofitted. In fact the submarines can launch torpedoes, missiles, UUVs and also lay mines comfortably. Thus making them, the toughest of platforms to counter.

Conclusion

“The marriage of air independent, nonnuclear submarines with over-the-horizon, fire and forget antiship cruise missiles and high endurance, wake homing torpedoes . . . [means that] traditional ASW approaches, employing radar flooding and speed, are not likely to be successful against this threat.”[xiv]

                                                                                    Rear Admiral Malcolm Fages

 The dimensions of submarine threat in the littorals, discussed briefly above encompass the underwater acoustic environment, the developments in submarine technology, the underwater unmanned vehicle, and the weapons. The discussion has brought out the potent danger an undetected submarine in littorals presents to the aggressor.

The Navy today faces a deficiency in an all inclusive understanding of the undersea environment in the coastal areas due to which it is difficult to counter the diesel electric submarine threat in the littorals. This deficit would not allow correct positioning and deployment of sensors for timely detection of the underwater peril. Research and development is also needed in the quality of sensors such that they are embedded with real time environmental information and can calibrate themselves accordingly for best results. As far as other environmental sensors are concerned, like those dependent on zoo plankton behaviour or bioluminescence fundamental research needs to be initiated with naval needs in focus. The acquisition of submarines and UUVs should be fast tracked if Indian Navy wants to be a credible littoral force.

 


[1] The speed of sound is given by the equation (available in text books):-C(T,P,S)=1449.2+4.6 T+0.055 T2+1.39 (S−35)+0.016 D(1)

Where: C is in m/sec, T in ° Celsius, D in metres and embodies density and static pressure effects. S in parts per thousand.

The speed of sound is dependent upon temperature and depth because the S, the salinity is nearly constant at 35 ppt for sea water.

————–

 [i] G D Bakshi China – Dong Feng 21-D: A Game Changer?

http://www.globaldefence.net/portals/aviation/21579-china-dong-feng-21-d-a-game-changer.html?showall=1    ( Accessed 20 Oct 12)

[ii] VISION | PRESENCE | POWER 2004, A Program Guide to the U.S. Navy, Chapter 1 http://www.navy.mil/navydata/policy/vision/vis04/vpp04-ch1.pdf ( Accessed 17 Oct 12)

[iii] US Navy DOD document, Concept for future naval Countermeasures inlittoral power projection 1998. http://www.fas.org/man/dod-101/sys/ship/weaps/docs/mcm.htm ( Accessed 23 Oct 12)

[iv] Robert J. Urick, Principles of Underwater Sound 3rd Edition Peninsula Pub (August 1, 1996)

[v] Lisa M. Zurk, Nigel Lee and Brian Tracey, “Robust Adaptive Processing in Littoral Regions with Environmental Uncertainty” in Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, ed. Nicholas Pace and Finn Jensen [Bruxelles, Netherlands: Kluwer Academic Publishing, 2002], 515.  http://web.cecs.pdx.edu/~zurkl/publications/saclant_2002.pdf ( Accessed 30 Oct 12)

 [vi]  Warren L.J. Fox et al. “Environmental Adaptive Sonar Control in a Tactical Setting.” in Impact of Littoral Environmental Variability of Acoustic Predictions and  Sonar Performance, ed. Nicholas Pace and Finn Jensen [Bruxelles, Netherlands: Kluwer Academic Publishing, 2002], 595

 [vii] Ibid.

 [viii] Benedict, Richard R. “The Unravelling and Revitalization of U.S. Navy Antisubmarine Warfare.” Naval War College Review 58, no.2, (Spring 2005), http://www.jhuapl.edu/ourwork/nsa/papers/art4-sp05.pdf ( Accessed 27 Oct 12)

  [ix]  Rajat Pandit, Pak adding submarine muscle as India dithers, The Times of India Apr 11, 2011.

 [x] K. L. Mahoney and N. D. Allen Glider Observations of Optical Backscatter in Different Jerlov Water Types: Implications to US Naval Operations, Research paper, 2009. Naval Oceanographic Office, Stennis Space Center, MS 39522 USA

 [xi] Milan Vego. “Future MCM Systems: Organic of Dedicated, Manned or Unmanned,” Naval Forces 26, no.4,(2005).

[xii]  21ST Century U.S. Navy Mine Warfare, http://www.navy.mil/n85/miw_primer-june2009.pdf

[xiii]  Scott C. Truver. TAKING MINES SERIOUSLY Mine Warfare in China’s Near Seas, Naval War College Review, Spring 2012, Vol. 65, No. 2

 [xiv] Malcolm I. Fages, Rear Adm., USN; remarks at Naval Submarine League Symposium, June 2000, as published in Submarine Review (October 2000), p. 34.

//
http://pagead2.googlesyndication.com/pagead/show_ads.js

52.India’s Bridges of Friendship in the Indian Ocean Region

(Published in World news report and Tazakhabarnews, 21 May 2015)

Two incidents in the recent past reflect the benevolent relationships India shares with countries in the Indian Ocean Region. First was supply of fresh water to Maldives through INS Deepak and INS Sukanya when the Maldivian desalination plant caught fire and the Maldives faced an unprecedented fresh water crisis. The second was evacuation of Indian and foreign citizens form Yemen involving Indian Navy, Indian Air Force, Air India, and passenger liners.

India has placed considerable emphasis on developing a security presence in the northeast Indian Ocean. There are several dimensions to this: first, India’s direct security presence in the Andaman Sea, second, its bilateral security relationships in the region and third, its aspirations to gain a security role in the Malacca Strait. While India aspires to play a significant security role in Southeast Asia it has given particular focus to the Malacca Strait, the key maritime choke point between the Indian and Pacific Ocean. India’s Andaman  and Nicobar islands, which run north-south through the Andaman Sea form a natural base for projecting power into the Strait and beyond into the South China Sea.

India has deep links with Singapore, which now acts as India’s primary economic, political and security partner in Southeast Asia. Singapore sees India as having an important security role in the region, acting as a balance to other extra-regional powers, including China, the United States, and Japan. India and Singapore conduct extensive security cooperation, including broad-based security dialogues, joint exercises, intelligence sharing, and cooperation in defense technology. At the invitation of the United States, India took a security role inside the Malacca Strait through the provision of naval escorts for high value commercial traffic, as part of the U.S. led Operation Enduring Freedom.

India has also been developing its security relationship with Indonesia; a Defence Cooperation Agreement was signed in 2001. There are biannual “coordinated” naval patrols; between the Indian and Indonesian navies in the Six-Degree Channel at the northern entrance to the Malacca Strait; to keep extremist groups from using these routes. These patrols comprise Indian and Indonesian vessels and aircraft, coordinated out of India’s Joint Operations Command in the Andaman Islands.

In November 2009, Australia and India concluded a joint security declaration, providing a framework for increased cooperation, security issues such as maritime policing (piracy and maritime terrorism, illegal fishing, people trafficking etc), disaster management, and anti-terrorism and there seem good prospects for closer security relations in coming years.

India-Malaysia defense relations have steadily grown over the years. A MOU on Defence Cooperation was signed in 1993. Malaysia-Indian Defence Cooperation meetings at the level of Defence Secretary from Indian side and Secretary General from Malaysian side are held regularly; Malaysia participates in the biennial MILAN event regularly. Indian navy and coast guard vessels make regular friendly port calls each year at Malaysian ports.

Thailand, and India have agreed to continue strengthening defence relations including exercises and joint patrolling.

Vietnam has also welcomed Indian Navy ships in their region, which would enhance India and Vietnam military relations. Vietnam has also sought Indian support for a peaceful resolution of the territorial disputes in the South China Sea.

India and Japan also have close military ties. They have shared interests in maintaining the security of sea-lanes in the Asia-Pacific and Indian Ocean, and in co-operation for fighting international crime, terrorism, piracy, and proliferation of weapons of mass destruction. The two nations have frequently held joint military exercises and co-operate on technology. India and Japan concluded a security pact on 22 October 2008.

In June 2012, India, a major importer of arms and military hardware purchased eight warships from South Korea.

The first Republic of the Philippines–India Security Dialogue was held in Manila on 12 March 2004. The Philippines and India agreed to establish a security dialogue that would serve as a policy forum for sharing security assessments and for reviewing and giving direction to co-operation in bilateral/regional security and defence matters.

In August 2009, a security agreement was formalised with Maldives that will significantly enhance India’s capabilities in the central Indian Ocean. India has been granted use of the former British naval and air base on Gan Island, part of the southernmost group of islands in the Maldives. (Lying around 1,000 km south of India and around 700 km north of Diego Garcia). As part of the agreement, India is also building a system of 26 electronic monitoring facilities across the Maldives archipelago.

India has cordial relations with Iran due to India being a major importer of Iranian oil and the fact that  it is now actively engaged in developing container terminals at Chahbahar port. Since 2003, India has entered into several defence agreements with Oman dealing with training, maritime security cooperation and joint exercises. The Indian Air Force uses the Thumrait air base for transit purposes and Oman has offered the Indian Navy berthing facilities in support of anti-piracy patrols. In 2008 India also entered into a security agreement with Qatar which, according to some reports, includes Indian security guarantees. The agreement, deals among other things with maritime security and intelligence sharing. India has a cordial relationship with Yemen since diplomatic ties were established in 1967.

The south western Indian Ocean forms the gateway between the Atlantic and Indian Oceans. India’s security relationships in the region are anchored by its close relationship with Mauritius, the island territory that lies around 900km to the east of Madagascar. India has long-standing and close political, economic and security associations with Mauritius. Since 2003, the Indian Navy has also provided maritime security through periodic patrols of Mauritian waters including anti-piracy patrols in 2010.

The Indian Navy has assisted Seychelles with maritime security in the EEZ under a 2003 defence cooperation agreement under which it provided anti-piracy patrols in early 2010. In July 2007 the Indian Navy opened an electronic monitoring facility in northern Madagascar at the head of the Mozambique Channel and reportedly has also been granted “limited” berthing rights in Madagascar for Indian naval vessels. The Indian Navy has also acted as a maritime security provider for Mozambique, in 2006, India and Mozambique entered a defence cooperation agreement that envisages joint maritime patrols, supply of military equipment, training, and technology transfer in repairing and assembling military vehicles, aircraft and ships.

India’s maritime security relationships in the southwestern Indian Ocean are also buttressed by growing maritime security relations with France and South Africa. Since 2001, the Indian Navy has conducted annual exercises with the French navy, which operates out of Reunion and Djibouti. India also has a growing presence in Antarctica, with three active research stations.

From the above it can be visualized that India has built a reasonable number of bridges of friendship in the Indian Ocean Region which have helped in enhancing its image as a benign friend in need.